期刊文献+

线缆长度驱动的两阶段热管约束组件布局优化方法

A Two-stage Cable Length-driven Layout Optimization Method for Components with Heat Pipe-related Constraints
下载PDF
导出
摘要 针对航天器总体布局设计过程中需要考虑线缆长度的问题,提出一种以线缆长度最小化为目标的两阶段热管约束组件布局优化方法。面向几何、质心、热管散热以及线缆长度等多种复杂约束相互耦合的布局难题,基于分而治之的思想提出将原问题解耦为两个序贯优化子问题,通过构建并求解子问题的混合整数规划模型,实现了综合考虑多条线缆最短化目标下预埋热管舱板组件布局的高效优化设计。数值布局算例结果表明,在包含15个组件、3条有线信息链路的多种优化场景下,本方法均可以找到两级求解框架下的最优布局设计结果,充分验证了方法的可行性和有效性。 For the case that the cable length is required to be considered during the spacecraft overall layout design problem,a two-stage heat pipe-constrained component layout optimization method is proposed with the objective of minimizing the cable length.To tackle the coupling layout difficulty caused by many complicated design constraints involved in geometry,system centroid,heat pipe-related dissipation and cable length,a divide-and-conquer strategy is applied to decompose the original problem into two independent optimization subproblems.Then both subproblems are modelled and solved sequentially using mixed integer programming technique,thus efficiently generating optimal layout designs of components on the heat pipes-embedding bearing plate with the compromise of simultaneously shortening multiple cables.A numerical layout example,involving 15 components and 3 wired routes,demonstrates that the proposed method can efficiently and successfully find optimal layout solutions in various optimization scenarios under the two-stage solving framework,which is proven to be feasible and effective.
作者 陈献琪 周炜恩 姚雯 夏宇峰 CHEN Xianqi;ZHOU Weien;YAO Wen;XIA Yufeng(Defense Innovation Institute,Chinese Academy of Military Science,Beijing 100071,China;Intelligent Game and Decision Laboratory,Chinese Academy of Military Science,Beijing 100071,China;College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2024年第6期842-853,共12页 Journal of Astronautics
关键词 航天器 组件布局优化 线缆长度 热管约束 混合整数规划 Spacecraft Component layout optimization Cable length Heat pipe-related constraints Mixed integer linear programming
  • 相关文献

参考文献4

二级参考文献66

  • 1裴晓强,黄海.协同优化在卫星多学科设计优化中的初步应用[J].宇航学报,2006,27(5):1054-1058. 被引量:13
  • 2王希季;李大耀.卫星设计学[M]上海:上海科学技术出版社,1997.
  • 3AIAA Technical Committee for MDC. On current state art multidisciplinary design optimization,AIAA 91-60531[R].Washington D.C.:AIAA,1991.
  • 4Giesing J P,Barthelemy J M. A summary of industry MDO applications and needs[A].Washington D.C.:AIAA,1998.
  • 5Agte J,Weck O D,Sobieski J. MDO:assessment and direction for advancement-an opinion of one international group[J].Structural & Multidisciplinary Optimization,2010.17-33.
  • 6Sobieski J,Haftka R T. Multidisciplinary aerospace design optimization:survey of recent development[J].Structural & Multidisciplinary Optimization,1997,(01):1-23.
  • 7Hulme F K,Bloebaum L C. A comparison of solution strategies for simulation-based Multidisciplinary Design Optimization,AIAA 98-4977[R].Washington D.C.:AIAA,1998.
  • 8Balling R J,Sobieski J. Optimization of coupled systems:a critical overview of approach[J].AIAA Journal,1996,(01):6-17.doi:10.2514/3.13015.
  • 9Yi S I,Shin J K,Park G J. Comparison of MDO methods with mathematical examples[J].Structural & Multidisciplinary Optimization,2008.391-402.
  • 10Tedford N P,Martins J R. Comparison of MDO architectures within a universal framework,AIAA 2006-1617[A].Washington D.C.:AIAA,2006.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部