期刊文献+

基于命令滤波的多电机协同控制设计及多轴辊压系统应用

Command Filter Based Multi-Motor Synchronous Control Design and Application in Multi-Axis Roller Pressing System
下载PDF
导出
摘要 针对多电机同步驱动的调速及伺服系统高精度协同控制问题,设计了基于命令滤波反步技术及虚拟主轴同步控制策略的高性能协同控制方法。结合永磁同步电机动力学模型与直轴电流闭环为0的矢量控制策略,构建交直轴解耦的简化多电机模型。基于命令滤波反步技术,设计多电机协同控制器,避免传统反步法控制器设计过程中的项数爆炸问题。进一步采用虚拟主轴同步控制策略设计多个电机之间的同步反馈信号,避免“伺服打架”现象产生的额外能量损耗及机械结构损伤。将所设计控制方法应用在烟草多轴辊压系统中,通过实际生产数据验证了所提方法的有效性与优越性。 Aiming at the high accuracy speed tracking and servo control problem in multi-motor systems,a command filter and virtual shaft based high performance synchronous control method was designed.Combining the dynamics of PMSM with id=0 vector control strategy,the simplified decoupling multi-motor system dynamics model was established.The command filtered backstepping technique was utilized to design the synchronous controller avoiding the item explosion phenomenon of traditional backstepping approach.The virtual shaft based synchronous feedback signals among various motors were designed to avoid extra energy loss and potential mechanical damage causing by rotating speed mismatch.The effectiveness and advantages of the designed method were validated through practical production data in the tobacco multi-axis roller pressing system.
作者 史狄 孙吉华 接道良 梁延刚 陆彬盛 陈煜华 辛洪敏 SHI Di;SUN Jihua;JIE Daoliang;LIANG Yangang;LU Binsheng;CHEN Yuhua;XIN Hongmin(Shanghai Tobacco Group Co.,Ltd.,Shanghai 200086,China;Yi Zhong(Qingdao)Tobacco Machinery Co.,Ltd.,Qingdao 266021,China;College of Automation,Qingdao University,Qingdao 266071,China)
出处 《微特电机》 2024年第7期62-66,共5页 Small & Special Electrical Machines
基金 国家自然科学基金项目(62103212)。
关键词 多电机伺服系统 命令滤波 反步法 多轴运动控制系统 multi-motor servo system command filter backstepping multi-axis motion control system
  • 相关文献

参考文献8

二级参考文献75

  • 1尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J].中国电机工程学报,2007,27(3):23-27. 被引量:144
  • 2杨飞.多电机同步联动控制系统的设计与分析[D].南京:南京理工大学,2005.
  • 3PEREZ-PINAL F J, NEFIEZ C, ALVAREZ R. Comparison of multi- motor synchronization techniques [C] //The 30th Annual Confer- ence of lndustrial Electronics Society. Piscataway, USA: IEEE, 2004: 1670- 1675.
  • 4WU F, CAI X L Switching fault-tolerant control of a flexible air- breathing hypersonic vehicle [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control En- gineering, 2013, 227(11): 24- 38.
  • 5SADEGHZADEH I, MEHTA A, CHAMSEDDINE A. Active fault tolerant control of a quad rotor UAV based on gain-scheduled PID control [C] //The 25th IEEE Canadian Conference on Electrical and Computer Engineering. Montreal, Canada: IEEE, 2012 : 1 -4.
  • 6YIN Y Y, SHI P, LIU E Gain-scheduled robust fault detection on time-delay stochastic nonlinear systems [J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4908 - 4916.
  • 7YE D, YANG G H. Adaptive fault-tolerant tracking control against actuator faults with application to flight control [J]. IEEE Transac- tions on Control Systems Technology, 2006, 14(6): 1088 - 1096.
  • 8LI X J, YANG G H. Robust adaptive fault-tolerant control for uncer- tain linear systems with actuator failures [J]. lET Control Theory & Applications, 2012, 6(10): 1544 - 1551.
  • 9JIANG B, GAO Z F, SHIP. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Fuzzy Systems, 2010, 18(5): 1000 - 1007.
  • 10MIRZATARIQ H, CHRISTOPHER E, HALIM A. Design and analy- sis of an integral sliding mode fault-tolerant control scheme [J]. 1EEE Transactions on Automatic Control, 2012, 57(7): 1783 - 1789.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部