摘要
针对桥梁高强度螺栓松动检测工作量大、目标小、异常多且难以获取等问题,该文提出一种半监督深度学习模型,即使少量负样本情况下也可得到螺栓松动检测模型,解决了模型训练样本不平衡的问题。YOLOv5-CT模型对螺栓目标检测的精度达98.33%。通过对螺栓数据进行预处理,提高Ganomaly模型对螺栓图像的重构能力。当隐空间向量值为100时,模型的SAUC最高,具有最佳判别性能。在模型测试阶段,将异常分数阈值设置为0.295,计算模型对高强度螺栓异常松动检测的精度可达到85%以上,实现螺栓的自动识别和检测。
High-strength bolt loosening detection of bridges faces problems such as heavy workload,small targets,many anomalies,and difficult collection.Therefore,this paper proposed a semi-supervised deep learning model,which could obtain the bolt loosening detection model even with a small number of negative samples and solve the problem of unbalanced model training samples.The accuracy of the YOLOv5-CT model for bolt target detection reached 98.33%.By preprocessing bolt data,the reconstruction ability of bolt images by the Ganomaly model was improved.When the hidden space vector value was 100,the model had the highest SAUC and the best discriminant performance.In the model test stage,the threshold of abnormal fraction was set to 0.295,and the accuracy of the calculation model for abnormal loosening detection of high-strength bolts could reach more than 85%.As a result,the automatic identification and detection of bolts were realized.
作者
谢海波
朱玮峻
张璧
张大海
XIE Haibo;ZHU Weijun;ZHANG Bi;ZHANG Dahai(School of Civil Engineering,Changsha University of Science&Technology,Changsha,Hunan 410144,China;Hunan Central South Bridge Equipment Manufacturing Co.,Ltd.,Huaihua,Hunan 418000,China;Construction Quality Inspection Center of Hunan Province Co.,Ltd.,Changsha,Hunan 410000,China)
出处
《中外公路》
2024年第4期171-179,共9页
Journal of China & Foreign Highway
基金
湖南省自然科学基金资助项目(编号:2022JJ50324)。