期刊文献+

机动目标跟踪时滞问题分析

Analysis of the time delay problem of maneuvering target tracking
下载PDF
导出
摘要 机动目标跟踪结果在时间轴上的滞后问题是当前机动目标跟踪领域的一大难点。产生时滞的情况很多,一般在跟踪初期和发生较大机动的时间段内尤为明显,常常会因此出现误差高峰。如果能有方法抑制或者消除时滞现象,将能显著提高跟踪效果。从仿真实验的结果和现象入手,结合卡尔曼滤波理论、交互式多模型算法和现代神经网络模型对时滞问题进行剖析,根据跟踪各个阶段情况的变化,分析时滞产生的不同原因,并提出可能的解决方法,以期为提高机动目标跟踪效果提供参考。 The lag of maneuvering target tracking results on the time axis is a major difficulty in the field of maneuvering target tracking.There are many cases of time delay,which are especially obvious in the early stage of tracking and the time period when a large maneuver occurs,and there is often a peak of error because of this,if there is a way to suppress or eliminate the time delay phenomenon,the tracking effect will be significantly improved.Starting from the results and phenomena of simulation experiments,combined with Kalman filter theory,interactive multi-model algorithm and modern neural network model,this paper will deeply analyze the time delay problem,and obtain different causes of time delay according to the changes of each stage of tracking and give corresponding solutions,so as to provide reference for improving the tracking effect of maneuvering targets in the future.
作者 李暐琪 柳超 曹政 张彦敏 薛伟 Li Weiqi;Liu Chao;Cao Zheng;Zhang Yanmin;Xue Wei(Yantai Research Institute,Harbin Engineering University,Yantai 264001,China;Naval Aviation University,Yantai 264001,China;Hubei Key Laboratory of Marine Electromagnetic Detection and Control,Wuhan 430071,China;Wuhan Second Ship Design and Research Institute,Wuhan 430064,China)
出处 《电子技术应用》 2024年第7期1-6,共6页 Application of Electronic Technique
基金 国家自然科学基金(62388102,62101583,61871392) 泰山学者工程(tsqn202211246)
关键词 机动目标跟踪 时滞 卡尔曼滤波 交互式多模型 神经网络 maneuvering target tracking time lag Kalman filter interactive multi-model neural networks
  • 相关文献

参考文献3

二级参考文献31

  • 1李相民,范洪达,史建国.卡尔曼滤波的极坐标算法及应用[J].海军航空工程学院学报,2002,17(2):210-212. 被引量:3
  • 2崔宁周,谢维信,余雄南.多传感器分布式推广卡尔曼滤波算法及其在雷达红外目标跟踪中的应用[J].电子科学学刊,1997,19(3):289-294. 被引量:10
  • 3C Bregler, J Malik. Tracking people with and exponential maps [ C ]. In : Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998. 8-15.
  • 4代凯乾 刘肖琳.基于图像序列的人体跟踪.计算机仿真,2005,17(9):33-39.
  • 5M S Arulampalam, S Maskell, Gordon N Etal. A tutuorial on par- ticle filters for online nonlinear/non- Gaussian Bayesian tracking [ C]. 1EEE Trans Signal Proceedings, 2002,50(2) : 174-188.
  • 6C Olivier, J G Smon. An overview of existing methods and recent advances in sequential Monte Carlo[ C]. Proceedings of the IEEE, 2007,95 ( 5 ) : 899-924.
  • 7N Gordon, D Salmond, A F M Smith. Novel approach to nonlin- ear/non-Gaussian Bayesian state estimation[C]. IEEE Proceeding F Radar Signal Process, 1993,140 : 107-113.
  • 8S J Julier, J K Uhlmann. Unscented filtering and nonlinear estima- tion [ C ]. Proceedings of the IEEE, 2004,92 ( 3 ) :401-422.
  • 9BAR- SHALOM Y, FORTMANN T E. Tracking and Data Association [ M ]. New York: Academic press, 1988.
  • 10BIRMIWAL K, BAR- SHALOM Y. Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter[A]. IEEE Trans. on AES[ C] . 1984.635 - 645.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部