期刊文献+

基于多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合

Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism
下载PDF
导出
摘要 针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度信息利于互补信息的融合;其次,采用密集连接块进行特征提取,减少信息损失最大限度利用信息;接着,设计了一种跨维度交互注意力机制,有助于捕捉关键信息,从而提升网络性能;最后,设计了从融合图像到源图像的分解网络使融合图像包含更多的场景细节和更丰富的纹理细节。在TNO数据集上对提出的融合框架进行了评估实验,实验结果表明本文方法所得融合图像目标区域显著,细节纹理丰富,具有更优的融合性能和更强的泛化能力,主观性能和客观评价优于其他对比方法。 Addressing the issues of inadequate feature extraction,lack of saliency in fused image regions,and missing detailed information in infrared-visible image fusion,this paper proposes a method for infrared-visible image fusion based on multi-scale contrast enhancement and a cross-modal interactive attention mechanism.The main components of the proposed method are as follows.(1)Multi-scale contrast enhancement module:Designed to strengthen the intensity information of target regions,facilitating the fusion of complementary information from both infrared and visible images.(2)Dense connection block:Employed for feature extraction to minimize information loss and maximize information utilization.(3)Cross-modal interactive attention mechanism:Developed to capture crucial information from both modalities and enhance the performance of the network.(4)Decomposition network:Designed to decompose the fused image back into source images,incorporating more scene details and richer texture information into the fused image.The proposed fusion framework was experimentally evaluated on the TNO dataset.The results show that the fused images obtained by this method feature significant target regions,rich detailed textures,better fusion performance,and stronger generalization ability.Additionally,the proposed method outperforms other compared algorithms in both subjective performance and objective evaluation.
作者 邸敬 梁婵 任莉 郭文庆 廉敬 DI Jing;LIANG Chan;REN Li;GUO Wenqing;LIAN Jing(School of Electronic and Information Engineering,Lan Zhou Jiao Tong University,Lanzhou 730070,China)
出处 《红外技术》 CSCD 北大核心 2024年第7期754-764,共11页 Infrared Technology
基金 国家自然科学基金(62061023) 甘肃省科技计划资助项目(22JR5RA360) 甘肃省杰出青年基金(21JR7RA345)。
关键词 红外与可见光图像融合 多尺度对比度增强 跨模态交互注意力机制 分解网络 infrared and visible image fusion multi-scale contrast enhancement cross-dimensional interactive attention mechanism decomposition network
  • 相关文献

参考文献2

二级参考文献17

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部