摘要
针对红外热像仪测温精度不足以及速度较慢的问题,提出了一种融合通道注意力机制的温度修正模型EACN(Efficient Attention Compression Networks Module)。该模型首先通过1×1卷积实现特征降维压缩,以此减少模型参数。其次引入通道注意力机制ECA,在特征映射模块阶段增强通道间特征显著性表达,以此弥补降维压缩所损失的特征信息,且进一步提高模型特征表征能力。最后,通过跳跃连接,在特征重建阶段结合浅层特征信息与语义空间信息,从而提高温度修正精度。本实验采用两种数据策略在自建数据集上进行实验。实验结果表明,与SRCNN和VDSR模型相比,EACN模型无论在修正精度方面,还是速度方面表现均最优。
A temperature correction model,EACN,based on a channel attention mechanism is proposed to address the issues of insufficient accuracy and slow speed in temperature measurements from thermal imaging cameras.First,the model parameters are reduced by decreasing the features through 1x1 convolution.Second,we introduce a channel attention mechanism,ECA,to enhance the feature saliency expression between channels in the feature mapping module stage,compensating for lost feature information during dimensionality reduction and compression,thereby further improving the feature characterization capability of the model.Finally,through skip connections,shallow feature information is combined with semantic space information in the feature reconstruction stage,thus improving temperature correction accuracy.In this experiment,two data strategies were used on a self-built dataset.The experimental results show that the EACN model outperforms the SRCNN and VDSR models in both correction accuracy and speed.
作者
魏永超
刘倩倩
朱泓超
朱姿翰
李锦
WEI Yongchao;LIU Qianqian;ZHU Hongchao;ZHU Zihan;LI Jin(Scientific Research Division,Civil Aviation Flight University of China,Deyang 618307,China;College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Deyang 618307,China;School of Computer Science,Civil Aviation Flight University of China,Deyang 618307,China;Institute of Electronic and Electrical Engineering,Civil Aviation Flight University of China,Deyang 618307,China)
出处
《红外技术》
CSCD
北大核心
2024年第7期843-852,共10页
Infrared Technology
基金
西藏科技厅重点研发计划(XZ202101ZY0017G)
四川省科技厅重点研发项目(2022YFG0356)
中国民用航空飞行学院科研基金(J2020-040,CJ2020-01)。
关键词
温度修正
注意力机制
卷积神经网络
跳跃连接
temperature correction
attention mechanism
convolutional neural network
jump connection