摘要
乳腺X线摄影术是目前国际上公认的有效的乳腺癌早期筛查手段。提出一种基于YOLOv3网络的乳腺X线图像肿块检测方法。该方法能够在保证精度的同时,以较快的速度一次完成对整幅图像中肿块的检测。应用迁移学习技术,将由数字化乳腺X线图像学习到的肿块病变检测知识迁移到全域数字图像,有效解决了目前全域数字图像数据集缺乏的问题。使用五折交叉验证方法,在DDSM和INbreast数据集上进行实验验证,最终得到的五折间肿块检测平均准确率为81.34%。
Mammography is internationally recognized as an effective screening tool for early breast cancer.This paper proposes a mammographic mass detection method based on YOLOv3 network.The method could complete mass detection of the whole image at a faster speed while ensuring accuracy.By applying transfer learning technology,the mass lesion detection knowledge learned from the digitized mammograms were transferred to the full-field digital mammograms,which effectively solved the current lack of full-field digital mammography datasets.The five-fold cross-validation method was used for evaluation based on DDSM and INbreast datasets.Through extensive experiments,the obtained average accuracy of the mass detection over the five folds is 81.34%.
作者
潘以轩
陈智丽
高皓
张辉
夏兴华
Pan Yixuan;Chen Zhili;Gao Hao;Zhang Hui;Xia Xinghua(School of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,Liaoning,China)
出处
《计算机应用与软件》
北大核心
2024年第7期136-144,共9页
Computer Applications and Software
基金
国家自然科学基金项目(61602322)
辽宁省自然科学基金项目(20180550059)
辽宁省教育厅重点攻关项目(lnzd201904)。