摘要
针对网络功能虚拟化(NFV)环境下高维度服务功能链(SFC)部署的高可靠低成本问题,该文提出了一种基于近端策略优化的服务功能链部署算法(PPO-ISRC)。首先综合考虑底层物理服务器特征和服务功能链特征,将服务功能链部署建模为马尔可夫决策过程,然后,以最大化服务率和最小化资源消耗为优化目标设置奖励函数,最后,采用近端策略优化方法对服务功能链部署策略求解。仿真实验结果表明,与启发式算法(FFD)和深度确定性策略梯度算法(DDPG)相比,所提算法具有收敛速度快,稳定性高的特点。在满足服务质量的要求下,降低了部署成本,并提高了网络服务可靠性。
In order to solve the high-dimensional Service Function Chain(SFC)deployment problem of high reliability and low cost in the Network Function Virtualization(NFV)environment,an Improving Service and Reducing Consumption based on Proximal Policy Optimization(PPO-ISRC)is proposed.Firstly,considering the characteristics of the underlying physical server and SFC,the state transition process of the underlying server network is descried,and the deployment of SFC is taken as a Markov Decision Process.Then the reward function is set with the optimization goal of maximizing the service rate and minimizing resource consumption.Finally the PPO method is used to solve the SFC deployment strategy.The results show that compared with the heuristic algorithm First-Fit Dijkstra(FFD)and the Deep Deterministic Policy Gradient(DDPG)algorithm,the proposed algorithm has the characteristics of fast convergence speed and higher stability.Under the requirements of service quality,the deployment cost is reduced and the reliability of network service is improved.
作者
颜志
禹怀龙
欧阳博
王耀南
YAN Zhi;YU Huailong;OUYANG Bo;WANG Yaonan(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
出处
《电子与信息学报》
EI
CAS
CSCD
北大核心
2024年第7期2869-2878,共10页
Journal of Electronics & Information Technology
基金
国家重点研发计划(2021YFC1910402)
国家自然科学基金重大项目(62293511)
湖南省科技重大专项(2021GK1010)
北京邮电大学网络与交换技术国家重点实验室项目(SKLNST-2021-2-03)。
关键词
网络功能虚拟化
服务功能链
深度强化学习
近端策略优化
Network Function Virtualization(NFV)
Service Function Chain(SFC)
Deep Reinforcement Learning(DRL)
Proximal Policy Optimization(PPO)