期刊文献+

多蛇形机器人编队路径跟踪控制

Formation Path-following Control of Multi-snake Robots
下载PDF
导出
摘要 为了实现多个蛇形机器人的编队控制,该文提出一种基于误差约束的抗干扰路径跟随方法。该方法使用高度耦合的动态频率补偿器来调整每个机器人的运动速度,以确保编队成员之间位置和速度的一致性。在动力学控制中,通过障碍函数的等效原则消除了虚拟变量的奇异现象,提高了路径跟随的稳定性。此外,该文设计了模型不确定性和外界干扰的预测值,以此来提前补偿机器人的关节偏移量和扭矩输入,从而进一步提高了跟随误差的收敛速度和稳态性能。最后,利用Lyapunov理论证明了该方法的一致最终有界性(UUB)。仿真数据表明,相对于其他经典方法,该文所提模型和控制策略具有更高的跟随精度。 To achieve formation control of multiple snake robots,an error-constrained anti-interference path-following method is proposed in this paper.A highly coupled dynamic frequency compensator is used to adjust the motion speed of each robot to ensure consistency in the position and velocity of the formation members.In dynamic control,the singularity phenomenon of virtual variables is eliminated by the equivalent principle of barrier functions,improving the stability of path following.In addition,predictive values for model uncertainty and external interference are designed to pre-compensate for joint offsets and torque inputs of the robots,further improving the convergence rate and steady-state performance of the following errors.Finally,the Lyapunov theory is used to prove the Uniform Ultimate Boundedness(UUB)of this system.Simulation data demonstrate that the proposed method and control strategy have higher following accuracy compared to other classic methods.
作者 郝爽 何玉鹏 陈继尧 王铮 HAO Shuang;HE Yupeng;CHEN Jiyao;WANG Zheng(Antai College of Economics&Management,Shanghai Jiao Tong University,Shanghai 200030,China;State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750001,China;Ningdong Power Supply Company,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750411,China;Eco-tech Research Institute,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750002,China)
出处 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2981-2993,共13页 Journal of Electronics & Information Technology
关键词 抗干扰 障碍李雅普诺夫函数 误差约束 编队控制 多蛇形机器人 Anti-disturbance Barrier Lyapunov theory Error constraint Formation control Multi-snake robots
  • 相关文献

参考文献10

二级参考文献49

  • 1朱威,郭宪,方勇纯,张学有.可重构模块化蛇形机器人研制及多运动模态研究[J].信息与控制,2020,49(1):69-77. 被引量:12
  • 2张丹凤,吴成东,李斌,王明辉.基于能量平衡的蛇形机器人被动蜿蜒控制方法[J].科学通报,2013,58(S2):83-90. 被引量:1
  • 3朱圣领,郭旭红,芮延年,王翔.一种新型蛇形机器人的运动规划研究[J].机械设计与研究,2004,20(5):23-25. 被引量:5
  • 4Gray J. The mechanism of locomotion in snakes[J]. Journal of Experimental Biology, 1946, 23(2): 101-120.
  • 5Crespi A, Badertscher A, Guignard A, et al. AmphiBot I: An amphibious snake-like robot[J]. Robotics and Autonomous Sys- tems, 2005, 50(4): 163-175.
  • 6Hirose S, Gave P P, Goulden C. Biologically inspired robots: Serpentine locomotors and manipulators[M]. Oxford, UK: Ox- ford University Press, 1993.
  • 7Chen L, Wang Y C, Ma S G, et al. Studies on lateral rolling loco- motion of a snake robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2004: 5070-5074.
  • 8Ye C L, Ma S G, Li B, et al. Turning and side motion of snake- like robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2004: 5075-5080.
  • 9Burdick J W, Radford J, Chirikjian G S. A 'sidewinding' loco- motion gait for hyper-redundant robots[J]. Advanced Robotics, 1995, 9(3): 195-216.
  • 10Haton R L, Choset H. Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction[J]. Au- tonomous Robots, 2010, 28(3): 271-281.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部