摘要
生成式人工智能(AI)技术的发展显著缩小了人工智能与人类认知能力的差距,这一趋势对知识型、专业型工作带来重大影响。本文以软件工程行业为研究对象,分析生成式AI在应用早期阶段对专业型工作的影响效果与机制。研究显示,现阶段生成式AI对专业型工作的冲击有限,对软件开发工作的影响以效率提升为主,距离大规模广泛替代还有较大差距。AI工具在通用型业务场景的效率提升效应最高,在行业属性较强的应用场景中提升效应有限。当应用场景涉及云计算、机器学习等前沿技术能力时,生成式AI工具的表现最差。原因在于,使用生成式AI工具辅助软件开发仍面临训练数据、复杂逻辑、隐性知识、人机交互等制约因素,在理解问题、解决问题、生成代码等环节限制了技术在实际应用中的表现。从长期来看,生成式AI有望推动软件开发工作从单向任务自动化转变为“人机合作”模式,从而实现基于“双向互动”的效率提升。本文的研究结果对未来如何建立专业型劳动者与人工智能技术进步之间的良性关系具有启发意义。
The development of generative artificial intelligence(AI)technology has significantly narrowed the gap between AI and human cognitive abilities,profoundly affecting knowledge-based and professional work.This study examines the software engineering industry to analyze generative AI's early-stage impacts and mechanisms on professional tasks.Our findings indicate that,at the current stage,generative AI has a limited impact on professional work,primarily enhancing efficiency in software development.There remains a significant gap before generative AI can broadly replace human roles.AI tools show the highest efficiency improvements in general business scenarios but are less effective in industry-specific applications.Notably,when application scenarios involve advanced technical capabilities such as cloud computing and machine learning,the performance of generative AI tools is suboptimal.The limitations arise from several constraints in using generative AI tools for software development,including issues with training data,complex logic,tacit knowledge,and human-computer interaction.These factors limit the technology's effectiveness in understanding problems,solving them,and generating code.In the long term,generative AI will shift sofware development from one-way task automation to a human-machine collaboration model,thereby enhancing efficiency through two-way interaction.The insights from this study are significant for establishing a positive relationship between professional workers and future AI technology advancements.
作者
马晔风
陈楠
崔雪彬
Ma Yefeng;Chen Nan;Cui Xuebin(Institute of Quantitative&Technological Economics,Chinese Academy of Social Sciences;Laboratory for Economic Big Data and Policy Evaluation,Chinese Academy of Social Sciences;School of Digital Economy and Management,Nanjing University)
出处
《劳动经济研究》
CSSCI
北大核心
2024年第3期3-34,共32页
Studies in Labor Economics
基金
国家社会科学基金青年项目(项目批准号:22CJY047)的资助。
关键词
生成式人工智能
专业型工作
软件开发
应用场景
generative AI
professional work
software development
application scenarios