期刊文献+

Multiscale Approach for Unconventional Superconductors

原文传递
导出
摘要 The remarkable electromagnetic characteristics inherent in unconventional superconductors have catalyzed the advance-ment of numerous technological innovations,spanning from energy-efficient power transmission and high-field magnets to sensitive detectors and quantum computing systems.Central to the functionality of these applications lies the superconducting characteristics,which govern pivotal phenomena including Cooper pair formation and macroscopic phase coherence,resulting in the attainment of zero electrical resistance,complete diamagnetism,and the Josephson tunneling effect.The complex phases and orders in these ma-terials significantly alter their key electronic and magnetic properties,posing challenges in elucidating the underlying physics and further enhancing their functional capabilities.The multiscale approach,representing a useful strategy for understanding materials across diverse length scales using a variety of experimental tools,can reveal intricate details in real and reciprocal spaces,facilitating cross-validation.In this brief review,we introduce the principle of the multiscale approach along with examples demonstrating its efficacy in unraveling the electronic and magnetic properties of unconventional superconductors.
出处 《Electromagnetic Science》 2024年第2期36-54,共19页 电磁科学(英文)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.12274439) the CAS Project for Young Scientists in Basic Research(Grant No.2022YSBR-048)。
  • 相关文献

参考文献9

二级参考文献7

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部