摘要
在信息化和数字化时代,科技论文数量的迅速增加带来了一系列问题,如论文冗长、信息提取困难、阅读时间成本居高不下等,研究者面临着更加烦琐、耗时的文献阅读挑战。通过语言模型落地创新,设计了科技论文辅助阅读系统来应对这些挑战。以机器阅读理解技术为核心,通过解析论文文本和预先设定问题,达到自动回答的效果。充分利用预训练语言模型PERT,提升系统对语义的理解和信息的提取能力,解决科技论文阅读过程中存在的各种问题,从而帮助读者提高科技文献阅读效率。
In the era of informatization and digitization,the rapid increase in the number of scientific papers has given rise to various challenges,such as lengthy articles,difficulty in information extraction and high time costs associated with reading.Literature reading challenges for researchers are increasingly tedious and time-consuming.By utilizing the language models,the assited reading system of scientific papers has been designed to address these challenges.By adopting machine reading comprehension technology as the core,the system parses scientific texts and offers some common questions to achieve automated response capabilities.By fully utilizing the pre-trained language model PERT,the system enhances its capabilities in semantic understanding and information extraction,effectively resolving various challenges in reading scientific papers and helping readers improve the efficiency of scientific literature review.
作者
秘蓉新
姚文文
阮宏坤
MI Rongxin;YAO Wenwen;RUAN Hongkun(National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China;Faculty of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处
《大数据》
2024年第4期121-129,共9页
Big Data Research
关键词
自然语言处理
机器阅读理解
预训练语言模型
natural language processing
machine reading comprehension
pre-trained language model