期刊文献+

Mg-Gd-Zn高稀土镁基复合材料的变形行为

Deformation behaviors of Mg-Gd-Zn based high rare-earth magnesium matrix composites
下载PDF
导出
摘要 通过半固态搅拌铸造和热挤压工艺制备了TC4(Ti-6Al-4V)颗粒增强Mg-13Gd-5Y-2Zn-1Mn镁基复合材料,采用光学显微镜、扫描电镜、单轴压缩试验和三点弯曲试验分析了其显微组织及变形行为。结果表明,在挤压过程中,TC4颗粒阻碍了其周边晶粒的动态再结晶过程和长周期堆垛有序(LPSO)相的变形,晶粒的织构方向发生改变,在基体内形成了LPSO相、TC4颗粒、再结晶晶粒和变形晶粒组成的不同区域。复合材料的压缩性能相较于基体材料得到了较大提升,其压缩屈服强度和极限抗压强度可达到450和637 MPa,压缩应变为10.1%。在压应力作用下,复合材料内出现以<1120>86°孪晶为主的大量变形孪晶,产生了较强的孪晶强化。 TC4(Ti-6Al-4V) particle reinforced Mg-13Gd-5Y-2Zn-1Mn magnesium matrix composites were prepared by semi-solid stirring casting and hot extrusion processes,and their microstructure and deformation behavior were analyzed using optical microscope,scanning electron microscopy,uniaxial compression testing and three-point bending testing.The results show that during the extrusion,the TC4 particles hinder the dynamic recrystallization process of its surrounding grains and the deformation of long-period stacking ordered(LPSO) phases,the texture direction of the grains is changed,and different regions composed of LPSO phase,TC4 particles,recrystallized grains and deformed grains are formed in the matrix.The compressive performance of the composites has been significantly improved compared to the matrix,with compressive yield strength and ultimate compressive strength reaching 450 and 637 MPa,and compressive strain of 10.1%.Under compressive stress,a large number of deformation twins,mainly <1120>86° twins,appear in the composites,resulting in strong twinning strengthening.
作者 王海清 李建波 王毅涛 罗欢 陈旭 陈先华 潘复生 WANG Hai-qing;LI Jian-bo;WANG Yi-tao;LUO Huan;CHEN Xu;CHEN Xian-hua;PAN Fu-sheng(School of Materials Science and Engineering,Chongqing University,Chongqing 400044,China)
出处 《材料热处理学报》 CAS CSCD 北大核心 2024年第7期34-43,共10页 Transactions of Materials and Heat Treatment
基金 国家重点研发计划(2022YFB3708400) 国家自然科学基金(52171133)。
关键词 稀土 镁基复合材料 TC4颗粒 LPSO 变形行为 rare-earth magnesium matrix composite TC4 particle LPSO deformation behavior
  • 相关文献

参考文献10

二级参考文献38

  • 1Su-qing ZHANG,Ti-jun CHEN,Ji-xue ZHOU.Effects of punch velocity on microstructure and tensile properties of thixoforged Mg2Sip/AM60B composite[J].Transactions of Nonferrous Metals Society of China,2020,30(1):110-122. 被引量:2
  • 2刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12. 被引量:114
  • 3陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113. 被引量:48
  • 4Letzig D, Swiostek J, Bohlen J, et al. Magnesium wrought alloy properties of the AZ-series[J]. Magnesium Technology, 2005, 13(2): 55-59.
  • 5ZHANG Zhao-hui, WANG Fu-chi, LI Shu-kui, et al. Deformation characteristics of the 93W-4.9Ni-2.1Fe tungsten heavy alloy deformed by hydrostatic extrusion[J]. Materials Science and Engineering, 2006, 435(5): 632-637.
  • 6Mohanraj J, Bonner M J, Barton D C,et al. Physical and mechanical characterization of oriented polyoxymethylene produced by die-drawing and hydrostatic extrusion[J]. Polymer, 2006, 47(16): 5897-5908.
  • 7Jeong H G, Yoon D J, Kim E Z, et al. The influence by hydrostatic extrusion on the microstructure and extrudability of the 1M processed hypereutectic Al-Si-X alloys[J]. Journal of Materials Processing Technology, 2002, 130(20): 438-443.
  • 8Koike J, Ohyama R, Kobayashi T, et al. Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K[J]. Materials Transactions, 2003, 44(4): 445-451.
  • 9Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy Zk60[J]. Acta Materialia, 2001, 49(7): 1199-1207.
  • 10Thiruvarudchelvan S. Lubricant film thickness in the plastic deformation zone of hydrostatic extrusion[J]. Wear, 1981, 72(3): 325-333.

共引文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部