期刊文献+

采用有限体积法的自然对流换热拓扑优化数值方法

A Numerical Method for Topology Optimization of Natural Convection Heat Transfer Based on Finite Volume Method
下载PDF
导出
摘要 针对基于有限体积法的热-流耦合数值分析缺乏拓扑优化框架问题,建立了采用有限体积法的自然对流换热拓扑优化方法。建立了流体固体统一描述的自然对流换热数学模型,提出了基于有限体积法的自然对流求解方法;通过引入基于结构的离散化描述方法,搭建了结构的描述框架并构建了流体与固体间的材料属性插值模型;针对自然对流中增强散热能力与增强物质传输能力问题,提出了拓扑优化的数学模型,明确了设计变量、目标函数以及约束条件,建立了自然对流拓扑优化方法框架;通过3个算例,验证了提出的数学模型和求解方法,并与商业软件COMSOL进行了对比。结果表明:提出的自然对流求解方法与COMSOL计算结果相比,压力、速度、温度的数值误差均小于3%;对于增强散热能力问题,采用提出的拓扑优化方法获得的最高温度优于COMSOL结果。所提基于有限体积法的自然对流拓扑优化方法的可行性和有效性得到了验证。 A topology optimization method for natural convection heat transfer based on the finite volume method(FVM)is established to address the lack of a topology optimization framework in numerical analysis of thermal-fluid coupling based on the FVM.A fluid-solid unified mathematical model of natural convection heat transfer is first established,and a solution algorithm based on the FVM is proposed.By introducing a structure-based discrete description method,a structure description framework and a material attribute interpolation model between the fluid and the solid are constructed.In addition,mathematical models of topology optimization for heat dissipation enhancement and material transport enhancement are proposed,and the design variables,objective functions and constraints are clarified.A framework of natural convection topology optimization algorithm is established.Finally,three examples are given to verify the proposed mathematical models and algorithm,and a comparison is made with the commercial software COMSOL.The results show that the numerical differences of pressure,speed and temperature between the natural convection algorithm proposed in this paper and COMSOL are less than 3%.For enhancing heat dissipation capacity,the maximum temperature obtained by the proposed topology optimization method is superior to the COMSOL optimization result.The results verify the feasibility and effectiveness of the proposed natural convection topology optimization method based on the FVM.
作者 杜飞 田镇熊 刘宏磊 郭书哲 郭俊康 李宝童 DU Fei;TIAN Zhenxiong;LIU Honglei;GUO Shuzhe;GUO Junkang;LI Baotong(School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China;State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China;School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第8期103-113,共11页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(52075445) 流体动力与机电系统国家重点实验室开放基金课题资助(GZKF-202123) 陕西省留学人员科技活动择优资助项目(2022001)。
关键词 自然对流 拓扑优化 有限体积法 强化散热 流体固体统一描述 natural convection topology optimization finite volume method strengthen heat dissipation fluid solid unified description
  • 相关文献

参考文献8

二级参考文献23

  • 1张鹏,肖鑫,王如竹,李明.壳管式潜热蓄能系统换热特性[J].化工学报,2012,63(S2):14-20. 被引量:9
  • 2TIAN Y S, KARAYIANNIS T G. Low turbulence nat- ural convection in an air filled square cavity: Part Ⅰ The thermal and fluid flow fields[J]. International Journal of Heat and Mass Transfer, 2000, 43 (6): 849-866.
  • 3TIAN Y S, KARAYIANNIS T G. Low turbulence natu- ral convection in an air filled square cavity: Part Ⅱ The turbulence quantities [J]. International Journal of Heat and Mass Transfer, 2000, 43(6):867-884.
  • 4GIEL P, SCHMIDT F. An experimental study of high Rayleigh natural convection in an enclosure [C]//Pro- ceedings of the 8th International Heat Transfer Con- ference. San Francisco, USA.. Hemisphere Publishing Corporation, 1986: 1459-1464.
  • 5PAOLUCCI S. Direct numerical simulation of two- dimensional turbulent natural convection in an enclosed cavity [J]. Journal of Fluid Mechanics, 1990, 215: 229-262.
  • 6TRIAS F X, SORIA M, OLIVA A. Direct numerical simulations of two-and three-dimensional turbulent natural convection flows in a differentially heated cavi- ty of aspect ratio 4 [J]. J Fluid Mech, 2007, 586(3): 259-293.
  • 7GEORGE W K. A theory for natural convection tur- bulent boundary layers next to heated vertical surfaces [J]. International Journal of Heat and Mass Transfer, 1979, 22(6): 813-826.
  • 8FARHANGNIA M, BIRINGEN S, PELTIER L J. Numerical simulation of two-dimensional buoyancy- driven turbulence in a tall rectangular cavity [J]. In- ternational Journal for Numerical Methods in Fluids, 1998, 23(12): 1311-1326.
  • 9周向阳,陈立平,黄正东.用SIMP-SRV方法进行柔性机构拓扑优化设计[J].中国机械工程,2008,19(6):631-635. 被引量:9
  • 10耿艳芬,王志力,陆永军.基于无结构网格单元中心有限体积法的二维对流扩散方程离散[J].计算物理,2009,26(1):17-26. 被引量:11

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部