摘要
为解决在精密温控系统中的传统比例-积分-微分(Proportion Integration Differentiation,PID)控制参数整定复杂、超调严重等问题,设计并搭建了精密温控系统,并且系统基于随机梯度下降(Stochastic Gradient Descent,SGD)准则,采用反向传播(Back Propagation,BP)神经网络算法实时动态调整PID参数。实验结果表明,BP神经网络PID温控系统具有更小超调和更快收敛速率等优势,系统超调量与弛豫时间分别比传统PID控制系统减少13.35%和18.56%。同时,在6 h测量时间内,被控对象温度波动的标准偏差达到0.00036℃。
Aiming at the problems of complex parameters setting and serious overshoot of classical Proportion-Integration-Differentiation(PID)algorithm,a high-precision temperature control scheme based on the Stochastic Gradient Descent(SGD)criterion and the Back Propagation(BP)neural network algorithm is designed and built,with the ability of dynamically adjusting the PID parameters in real-time.The experimental results show that the proposed temperature control system based on BP neural network PID has the advantages of smaller overshoot and faster convergence rate.The overshoot and relaxation time of the new system are reduced by 13.35%and 18.56%,respectively.Meanwhile,the standard deviation of temperature fluctuation reaches to 0.00036℃during the 6 h measurement time.
作者
李博通
徐彦呈
于志伟
熊正阳
孙云龙
杨鹏
袁文豪
柳奎
张风雷
LI Botong;XU Yancheng;YU Zhiwei;XIONG Zhengyang;SUN Yunlong;YANG Peng;YUAN Wenhao;LIU Kui;ZHANG Fenglei(School of Electrical and Electronic Information Engineering,Hubei Polytechnic University,Huangshi Hubei 435003;MOE Key Laboratory of Fundamental Physical Quantities Measurements and Hubei Key Laboratory of Gravitation and Quantum Physics and PGMF,School of Physics,Huazhong University of Science and Technology,Wuhan Hubei 430074;School of Physics and Astronomy,Sun Yat-sen University,Zhuhai Guangdong 519082)
出处
《湖北理工学院学报》
2024年第4期10-14,共5页
Journal of Hubei Polytechnic University
基金
湖北理工学院科研项目(项目编号:22xjz03Q,21xjz06R)。
关键词
BP神经网络
温度控制
PID控制
随机梯度下降
BP neural network
temperature control
PID control
stochastic gradient descent