摘要
Magnesium hydride(MgH_(2))is considered as an ideal hydrogen storage material with excellent hydrogen capacity,but the slow kinetics impedes its application.Herein,an efficient additive of V2C MXene-anchored PrF_(3) nanoparticles(PrF_(3)/V_(2)C)was synthesized,which presents excellent catalytic effect in improving the reversibility and stability of hydrogen storage in MgH_(2).The initial dehydrogenation temperature of the 5 wt.% PrF_(3)/V_(2)C-containing MgH_(2)(182℃) is 105℃ lower than that of pure MgH_(2),and 6.5 wt.%hydrogen is rapidly released from 5 wt.%PrF_(3)/V_(2)C-added MgH_(2)sample in 6 min at 240℃.In addition,5 wt.%PrF_(3)/V_(2)C-containing MgH_(2) sample possesses outstanding reversible hydrogen storage capability of 6.5 wt.% after 10 cycles of dehydrogenation and hydrogenation.Microstructure analysis shows that the introduction of Pr improves the stability of V-species(V^(0)and V^(2+))and O-species(lattice oxygen(OL)and vacancy oxygen(OV))formed during ball milling,promotes the interaction between V-species and O-species,and enhances their reversibility,which contributes to the significant improvement in re/dehydrogenation reversibility and cycling stability of MgH_(2).This study provides effective ideas and strategies for the purpose of designing and fabricating high-efficient catalysts for solid-state hydrogen storage materials.
基金
supported by the National Natural Science Foundation of China(Nos.U22A20120,52071135,51871090,and U1804135)
the Natural Science Foundation of Hebei Province for Innovation Groups Program(No.C2022203003)
Fundamental Research Funds for the Universities of Henan Province(No.NSFRF220201).