摘要
Electrocatalytic nitrate reduction reaction(e-NO_(3)RR)offers a promising alternative method for nitrogen cycling and ammonia(NH3)production under ambient conditions.However,the method is still in the dilemma of lowering the reaction overpotential and increasing the reaction activity.We successfully developed the composition-adjustable Co_(6)Mo_(6)C/Co/N-doped carbon(NC)catalysts by in situ carbonization of Co-based metal-organic framework(MOF)with the constrained phosphomolybdic acid.After adjusting the ratio of Co0 and Co_(6)Mo_(6)C,Co_(6)Mo_(6)C/Co/NC-3 could satisfy both NO_(3)−conversion at low potential and NH_(x)hydrogenation,and synthesize ammonia efficiently through the synergistic effect of Co0 and Co_(6)Mo_(6)C.It achieved an ammonia yield rate as 1233.2μg·h^(−1)·mgcat^(−1)and Faradaic efficiency of NH4+93.6%at−0.33 V vs.reversible hydrogen electrode(RHE).Importantly,density functional theory(DFT)calculations and experimental results have demonstrated for the first time the excellent adsorption of nitrite(NO_(2)^(−))by the Mo sites of Co_(6)Mo_(6)C during e-NO_(3)RR,avoiding the undesirable accumulation of NO_(2)^(−).
基金
supported by the National Natural Science Foundation of China(Nos.22065030 and U22A20391)
the Natural Science Foundation of Ningxia Province(No.2022AAC03109)
X.M.L.expresses gratitude for the support received from the Ningxia Youth Talent Support Project of Science and Technology,as well as Professor Guidong Yang.