期刊文献+

MOF-templated tubular Ni_(1−x)Co_(x)S_(2)-CdS heterojunction with intensified direct Z-scheme charge transmission for highly promoted visible-light photocatalysis

原文传递
导出
摘要 Hollow semiconductor nanostructures with direct Z-scheme heterojunction have significant advantages for photocatalytic reactions,and optimizing the interfacial charge transmission of Z-scheme heterojunction is the hinge to achieve excellent solar conversion efficiency.In this work,tubular Ni_(1−x)Co_(x)S_(2)-CdS heterostructures with reinforced Z-scheme charge transmission were constructed through an In-metal-organic framework(MOF)templated strategy.The Z-scheme charge transfer mechanism was sufficiently confirmed by combining density functional theory(DFT)calculation,X-ray photoelectron spectroscopy(XPS),surface photovoltage spectroscopy(SPV),and radical testing results.Crucially,the use of sodium citrate complexant contributes to the formation of intimate heterointerface,and the Fermi level gap between CdS and NiS_(2)is enlarged through Co doping into NiS_(2),which enhances the built-in electric field and photo-carriers transmission driving force for Ni_(1−x)Co_(x)S_(2)-CdS heterojunction,resulting in an evidently promoted activity toward H2 evolution reaction(HER).Under visible-light(λ>400 nm)irradiation,the Ni_(1−x)Co_(x)S_(2)-CdS composite with 10 mol%Co doping and 80 wt.%CdS(NC_(0.10)S-80%CdS)achieved an outstanding HER rate up to 35.94 mmol·g^(−1)·h^(−1)(corresponding to the apparent quantum efficiency of 34.7%at 420 nm),approximately 76.4 times that of 3 wt.%Pt-loaded CdS and it is much superior to that of most CdS-based photocatalysts ever reported.Moreover,the good photocatalytic durability of Ni_(1−x)Co_(x)S_(2)-CdS heterostructures was validated by cycling and long-term HER tests.This work could inspire the development of high-performance Z-scheme heterojunction via optimizing the morphology and interfacial charge transmission.
出处 《Nano Research》 SCIE EI CSCD 2024年第7期6281-6293,共13页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22179068,52272222,52072197,and 52171140) the 111 Project of China(No.D20017) the Natural Science Foundation of Shandong Province(No.ZR2019JQ14) the Major Scientific and Technological Innovation Project of Shandong Province(No.2019JZZY020405) the Key Research and Development Program of Jiangsu Province(No.BE2021070) the Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province(No.2022TSGC1257) the Shandong Province“Double-Hundred Talent Plan”(Nos.WST2019011,WST2020003,and WST2021021) the Major Research Program of Jining City(No.2020ZDZP024).
  • 相关文献

参考文献15

二级参考文献101

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部