期刊文献+

基于集成学习的煤灰软化温度预测研究

Coal Ash Softening Temperature Prediction Research Based on Ensemble Learning
下载PDF
导出
摘要 对煤灰软化温度(ST)的预测任务,现有的传统经验公式及神经网络算法,普遍面临泛用性和泛化能力不足的问题。以堆叠结构组织回归决策森林和AdaBoost回归算法,放松了原始数据规模和特征规模对模型参数规模的限制,提高了模型的泛用性和泛化能力。实验结果表明,该模型预测准确度能够控制在2.25%以内,验证了所提出煤灰软化温度预测方法的有效性。 For the task of coal ash softening temperature(ST)prediction,the existing traditional empirical formulations and neural net work algorithms generally face the problems of insufficient general-ization ability and generalization ability.In this paper,we organize the regression decision forest and AdaBoost regression algorithm with a stacked structure,which relaxes the limitations of the original da-ta size and feature size on the model parameter size,and improves the model's generalization ability and generalization ability.The experimental results show that the prediction accuracy of the model can be controlled within 2.25%,which verifies the effectiveness of the coal ash softening temperature predic-tion method suggested in this paper.
作者 杜超贤 陈志奎 DU Chaoxian;CHEN Zhikui(Guoneng(Zhaoqing)Thermal Power Co.,Ltd.,Zhaoqing Guangdong 526238,China;Dalian University of Technology,Dalian Liaoning 116023,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2024年第7期44-47,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 软化温度 集成学习 设计煤 配煤掺烧 softening temperature ensemble learning designed coal coal blending
  • 相关文献

参考文献3

二级参考文献36

  • 1李钷,李敏,刘涤尘.基于改进回归法的电力负荷预测[J].电网技术,2006,30(1):99-104. 被引量:56
  • 2COSTANZA R, D'ARGE R, GROOT R, et al. The value of the world's ecosystem services and natural capital [J]. Nature, 1997, 387 (15) : 253 -260.
  • 3NOWAK D J, CIVEROLO K L, RAO S T, et al. A modeling study of the impact of urban trees on ozone [J]. Atmos Environ, 2000, 34(10): 1 601-1 613.
  • 4MYEONG S, NOWAK D J, AND DUGGIN M J. A temporal analysis of urban forest carbon storage using remote sensing [J]. Remote Sens Environ, 2006, 101 (2) : 277 -282.
  • 5BOLUND P, HUNHAMMAR S. Ecosystem services in urban areas [J].Ecol Econ, 1999, 29 (2) : 293 -301.
  • 6YANG J, MCBRIDE J, ZHOU J, et al. The Urban forest in Beijing and its role in air pollution reduction [J]. Urban For Urban Green, 2005, 3 (2) : 65 -78.
  • 7HUANG C D, YANG L, WYLIE B, et al. A strategy for estimating tree canopy density using Landsat 7 ETM + and high resolution images over large areas [ C/OL] //Colorado: The Third International Conference on Geospatial Information in Agriculture and Forestry Held in Denver, 2001.
  • 8HUANG C D, SHAO Y, LIU J, et al. Temporal analysis of urban forest in Beijing using Landsat imagery [J]. J Appl RemoteSens, 2007, 1 (1): 9.
  • 9MILLER L. GIS branches into urban forestry [J]. Am City County, 1995, 110: 35.
  • 10LONGCORE T, LI C, WILSON J P. Applicability of CITYgreen urban ecosystem analysis software to a densely built urban neighborhood [J].Urban Geogr, 2004, 25 (2) : 173 - 186.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部