摘要
本文利用集值微分方程理论和Lyapunov函数方法,建立了具有因果算子的集值微分方程的比较原理,研究了在Hukuhara导数意义下的具有因果算子的集值微分系统解的相对稳定性、相对实用稳定性和相对Lipschitz稳定性问题,并得到了其相应的判别准则.
In this paper,the comparison principle of set differential equations with causal operators is established by using set differential equation theory and Lyapunov function method.The relative stability,relative practical stability and relative Lipschitz stability of the solutions of the set differential system with causal operators in the sense of Hukuhara derivative are studied,and the corresponding criterion are obtained.
作者
王培光
王伟康
鲍俊艳
WANG Peiguang;WANG Weikang;BAO Junyan(College of Mathematics and Information Science,Hebei University,Baoding,Hebei,071002,P.R.China)
出处
《数学进展》
CSCD
北大核心
2024年第4期809-824,共16页
Advances in Mathematics(China)
基金
国家自然科学基金(Nos.12171135,11771115)。
关键词
集值微分系统
因果算子
比较原理
相对稳定性
set differential system
causal operator
comparison principle
relative stability