摘要
本文利用经典的Hausdorff非紧性测度理论,在Banach空间X中讨论了有界算子的非紧性测度β(T)与几个算子半范数之间的关系:设B(X)为X到自身的有界线性算子全体,则■T∈B(X),β(T)=‖T‖0.当X的基常数为1时,有β(T)=‖T‖K.在X中,有β(T**)≤β(T)≤2β(T**),特别地当X为Hilbert空间时,有β(T**)=β(T*)=β(T)=‖T‖0=‖T*‖0=‖T‖K.
In this paper,we use the classical Hausdorff measure of noncompactness to discuss the relationship between measure of non-compactness of operatorβ(T)and several operator seminorms in Banach space X:Denoting by B(X)the set of bounded linear operators from X to itself,we haveβ(T)=|T‖_(0),■T∈B(X).When the base constant of X is 1,there isβ(T)=|T‖_(K).In X,we obta.in thatβ(T^(**))≤β(T)≤2β(T^(**));especially when X is a Hilbert space,we haveβ(T^(**))=β(T^(*))=β(T)=|T‖_(0)=‖T^(*)‖_(0)=‖T‖_(K).
作者
沈钦锐
孙俊俊
SHEN Qinrui;SUN Junjun(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian,363000,P.R.China)
出处
《数学进展》
CSCD
北大核心
2024年第4期875-882,共8页
Advances in Mathematics(China)
基金
国家自然科学基金青年基金项目(No.11801255)
福建省自然科学基金面上项目(No.2020J01798)
高校博士启动科研基金项目(No.L21704)。
关键词
非紧性测度
算子非紧性测度
BANACH空间
measure of noncompactness
measure of noncompactness of operators
Banach space