期刊文献+

Rotor Angle Stability Prediction Using Temporal and Topological Embedding Deep Neural Network Based on Grid-informed Adjacency Matrix

原文传递
导出
摘要 Rotor angle stability(RAS)prediction is critically essential for maintaining normal operation of the interconnected synchronous machines in power systems.The wide deployment of phasor measurement units(PMUs)promotes the development of data-driven methods for RAS prediction.This paper proposes a temporal and topological embedding deep neural network(TTEDNN)model to accurately and efficiently predict RAS by extracting the temporal and topological features from the PMU data.The grid-informed adjacency matrix incorporates the structural and electrical parameter information of the power grid.Both the small-signal RAS with disturbance under initial operating conditions and the transient RAS with short circuits on transmission lines are considered.Case studies of the IEEE 39-bus and IEEE 300-bus power systems are used to test the performance,scalability,and robustness against measurement uncertainties of the TTEDNN model.Results show that the TTEDNN model performs best among existing deep learning models.Furthermore,the superior transfer learning ability from small-signal RAS conditions to transient RAS conditions has been proved.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期695-706,共12页 现代电力系统与清洁能源学报(英文)
基金 supported in part by the National Natural Science Foundation of China(No.21773182) the HPC Platform,Xi’an Jiaotong University。
  • 相关文献

参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部