摘要
Environmental barrier coatings(EBCs)with thermomechanical robustness against calcium–magnesium–aluminum–silicate(CMAS)deposits are in high demand.The aim of this work was to clarify the influence of Sc^(3+)on the crystallization behavior of Yb-based coatings against CMAS deposits.The reaction products of solid solutions with compositions traversing the Sc_(2)O_(3)–Yb_(2)O_(3)system indicate that Sc^(3+)tends to form[BO_(6)]coordination polyhedra in the crystal structure to promote the formation of garnet and diopside,while Yb^(3+)occupies 7-,8-,and 9-coordinate sites to crystallize apatite and silicocarnotite.The transformation of crystalline products from apatite/silicocarnotite to garnet/diopside greatly improves the efficiency of CMAS melt consumption and facilitates the prevention of its further penetration and corrosion.Based on the commonality of cation occupancy in crystallography,an A(CaO+YbO_(1.5))–B(ScO_(1.5)+MgO+AlO_(1.5))–T(SiO_(2))pseudoternary phase diagram is established,which has great potential for describing phase equilibrium in coating-deposit systems and can provide guidance for the compositional design of corrosion-resistant coatings.
基金
supported by the National Natural Science Foundation of China(Nos.U21A2063,52372071,52002376,and 52302076)
the National Key R&D Program of China(No.2021YFB3702300)
the Liaoning Revitalization Talents Program(No.XLYC2002018)
the International Partnership Program of the Chinese Academy of Sciences(No.172GJHZ2022094FN).