摘要
博物馆负责海量文化遗产的保管、研究、传播等工作。随着人工智能技术的飞速发展,社会对博物馆智能化水平的要求不断提高。以大语言模型和人工智能代理为代表的通用人工智能取得了里程碑式的进展,给新时代博物馆建设提供了新技术支撑。以平行智能和平行博物馆系统为平台,提出了人工智能代理驱动的人机混合博物馆管理架构,从而发挥平行博物馆虚实交互与平行执行的框架作用。阐述了智能代理驱动的平行博物馆系统架构与关键技术,基于人工系统构建智能代理的生产工厂和运行平台,利用计算实验进行博物馆的建模和智能代理的训练,通过自然人、数字人和机器人构建人机混合的智能代理团队,实现虚拟博物馆与实体博物馆的平行执行与迭代优化。最后,介绍了智能代理驱动的平行博物馆典型案例。
Museums are responsible for the preservation,research and dissemination of vast cultural heritage.With the rapid development of artificial intelligence technology,society’s demand for the intelligence level of museums is increas‐ing.General artificial intelligence represented by large language models and artificial intelligence agents has achieved milestone progress,providing new technological support for the construction of museums in the new era.The artificial in‐telligence agent-driven human-machine hybrid museum management architecture was proposed based on parallel intelli‐gence and parallel museum systems,thereby further leveraging the framework of parallel interaction and parallel execu‐tion of parallel museums.The system architecture and key technologies of intelligent agent-driven parallel museums were elaborated.Parallel execution and interaction optimization between artificial museums and real museums were realized by building a production factory and operation platform for intelligent agents based on artificial systems,using computa‐tional experiments to model museums and train intelligent agents,and constructing a human-machine hybrid intelligent agent team composed of biological workers,digital workers,and robotic workers.Finally,typical cases of intelligent agent-driven parallel museums were introduced.
作者
鲁越
郭超
倪清桦
李华飙
王春法
王飞跃
LU Yue;GUO Chao;NI Qinghua;LI Huabiao;WANG Chunfa;WANG Fei-Yue(School of Control Science and Engineering,Shandong University,Jinan 250061,China;The State Key Laboratory for Management and Control of Complex Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;Macao University of Science and Technology,Macao 999078,China;National Museum of China,Beijing 100006,China)
出处
《智能科学与技术学报》
CSCD
2024年第2期134-149,共16页
Chinese Journal of Intelligent Science and Technology
基金
国家自然科学基金项目(No.61533019)。