期刊文献+

FY3D/GNOS大气掩星探测温度与TIMED/SABER探测温度和NRLMSISE00模式温度的比较

Comparison of FY3D/GNOS Atmospheric Occultation Detection Temperature with TIMED/SABER Occultation Temperature and NRLMSISE00 Model Temperature
下载PDF
导出
摘要 大气温度数据的精确探测对于研究中高层大气的结构特征和动力学过程具有重要意义.利用2019年1月至2021年12月共3年的FY3D掩星观测数据,借助TIMED/SABER探测数据和NRLMSISE00大气模式数据,对12~100 km范围内的大气温度数据进行比较.统计分析SABER-FY3D温度偏差(TSABER–TFY3D)和NRLMSISE00-FY3D温度偏差(TNRLMSISE00–TFY3D)及其随纬度、季节的分布和南北半球的差异.结果显示,三种温度数据随高度变化趋势是大体一致的,SABER-FY3D温度偏差在12~30 km高度范围内为正偏差(0~1.8K),随高度升高,温度偏差从30 km处的0 K增加到77 km处的-11.6 K.NRLMSISE00-FY3D温度偏差在平流层为正偏差(0~4.4 K),在中间层和低热层为负偏差(-2~0 K).两种温度偏差随纬度和季节都存在明显的变化特征.60 km以下,SABER-FY3D温度偏差在低纬地区较小(-3.8~1.8 K),高纬地区较大(-12~1.6 K),夏季较小(-0.5~2.2 K),冬季较大(-6.2~1 K);NRLMSISE00-FY3D温度偏差正好相反,在高纬地区较小(-1.6~2.4K),低纬地区较大(-3.9~6.1 K),冬季较小(-2~2.2 K),夏季较大(-1.3~7.1 K).两类月平均温度偏差的零偏差线所在高度在南北半球均存在春夏季节较高,秋冬季节较低的特征.冬季40~60 km高度区域内,北半球的SABER-FY3D平均温度负偏差比南半球的明显. The accurate detection of atmospheric temperature is of great significance for studying the structural characteristics and dynamic processes of the middle and upper atmosphere.The GNOS(Glob-al Navigation Satellite System Occultation Sounder)mounted on the FY3D has been carrying out atmo-spheric sounding since 15 November 2017.The purpose of this study is to evaluate the atmospheric tem-perature data products of the FY3D satellite.This study was conducted to comparatively analyze the at-mospheric temperature data within the range of 12~100 km based on FY3D occultation observation da-ta for 3 years from January 2019 to December 2021,with the aid of TIMED/SABER detection data and NRLMSISE00 atmospheric model data.The SABER-FY3D temperature deviation(TSABER–TFY3D)and NRLMSISE00-FY3D temperature deviation(TNRLMSISE00–TFY3D)and their distribution with latitude,season,and the difference between the northern and southern hemispheres were analyzed.The results show that the three sets of temperature data have generally consistent trend with change in height.SABER-FY3D temperature deviation is positive(0~1.8 K)in the altitude range of 12~30 km,and as-the altitude increases,the temperature deviation increases from 0 K at 30 km to 11.6 K at 77 km.temperature deviation is positive(0~4.4 K)in the stratosphere,and negative-(NRLMSISE00-FY3D2~0 K)in the mesosphere and low thermosphere.Both temperature deviations show significant varia-tions with latitude and season.Below 60 km,SABER-FY3D temperature deviation is smaller in the low---latitude region(3.8~1.8 K)and larger in the high-latitude region(12~1.6 K),smaller in summer--(0.5~2.2 K)and larger in winter(6.2~1 K);NRLMSISE00-FY3D temperature deviation is just the--opposite,smaller in the high-latitude region(1.6~2.4 K)and larger in the low-latitude(3.9~6.1 K),--smaller in winter(2~2.2 K),,and larger in summer(1.3~7.1 K).The zero deviation lines of the two types of monthly average temperature deviations show characteristics of being higher in spring and sum-mer and lower autumn and winter in both hemispheres.In the winter,in the altitude region of 40~60 km,the negative deviation of the SABER-FY3D average temperature in the northern hemisphere is more obvious than that in the southern hemisphere.
作者 刘红珊 徐寄遥 白伟华 何杰颖 孙龙昌 朱亚军 袁韦 高红 LIU Hongshan;XU Jiyao;BAI Weihua;HE Jieying;SUN Longchang;ZHU Yajun;YUAN Wei;GAO Hong(State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences,Beijing 100190;Beijing Key Laboratory of Space Environment Exploration,National Space Science Center,Chinese Academy of Sciences,Beijing 100190;Key Laboratory of Microwave Remote Sensing Chinese Academy of Sciences,National Space Science Center,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049)
出处 《空间科学学报》 CAS CSCD 北大核心 2024年第3期474-487,共14页 Chinese Journal of Space Science
基金 中国科学院青年交叉团队项目(JCTD-2021-10) 中国科学院国家空间科学中心“攀登计划”项目 中国科学院青年创新促进会项目(2020156) 国家自然科学基金项目(41774160,41831073) 云南省汪景琇院士工作站(202005AF150025) 中高层大气和电离层中-俄联合研究项目共同资助。
关键词 FY3D大气掩星温度 温度偏差 季节变化 纬度变化 FY3D atmospheric occultation temperature Temperature deviation Seasonal variation Latitude variation
  • 相关文献

参考文献7

二级参考文献66

  • 1宫晓艳,胡雄,吴小成,张训械.大气掩星反演误差特性初步分析[J].地球物理学报,2007,50(4):1017-1029. 被引量:25
  • 2Larsen G B, Syndergaard S, H+eg P, et al. Single Frequency Processing of Фsted GPS Radio Occultation Measurements[J]. GPS Solution, 2005, 9(2) : 144-155.
  • 3Wickert J, Reigber C, Beyerle G, et al. Atmosphere Sounding by GPS Radio Occultation: First results from CHAMP[J]. Geophysical Research Letters, 2001, 28(17): 3 263-3 266.
  • 4Rocken C, Kuo Y H, Schreiner W, et al. COSMIC System Description [J]. Special Issue of Terrestrial, Atmospheric and Oceanic Science, 2000, 11(1) : 21-52.
  • 5Wickert J, Schmidt T, Beyerle G, et al. The Radio Occultation Experiment Aboard CHAMP Operational Data Analysis and Validation of Vertical Atmospheric Profiles[J]. Journal of the Meteorological Society of Japan, 2004, 82(1B) : 381-395.
  • 6Wickert J. Comparison of Vertical Refractivity and Temperature Profiles from CHAMP with Radiosonde Measurements[R]. Scientific Report 04-09, Danish Meteorological Institute, Danmark, 2004.
  • 7Kuo Y H, Schreiner W S, Wang J, et al. Comparison of GPS Radio Occultation Soundings with Radiosondes[J]. Geophysical Research Letters, 2005, 32(05) : 817-840.
  • 8Kursinski E R, Hajj G A, Schofield J T, et al. Observing Earth's Atmosphere with Radio Occultation Measurements Using the Global Positioning System [J].J Geophys Res, 1997, 102(D19): 23 429- 23 465.
  • 9Rocken C, Anthes R, Exner M, et al. Analysis and Validation of GPS/MET Data in the Neutral At- mosphere[J]. J Geophys Res, 1997, 102(D25): 29 849-29 866.
  • 10Anthes R A, Bernhardt P A, Chen Y, et al. The COSMIC/FORMOSAT-3 Mission: Early Results [J].Bulletin of the American Meteorological Society, 2008, 89(3): :313-333.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部