期刊文献+

基于改进注意力模块的船舶涂装缺陷检测方法

Ship painting defect detection method based on improved attention module
下载PDF
导出
摘要 针对人工检测船舶缺陷效率低、传统检测网络准确率差的问题,提出一种基于改进注意力模块(improved convolutional block attention module, ICBAM)的船舶涂装缺陷检测方法.首先,YOLOv4在路径聚合网络中将深度可分离卷积代替常规卷积形成IYOLOv4,减少模型计算量;其次,将ICBAM融入IYOLOv4的路径聚合网络Route层后形成ICBAM-IYOLOv4,ICBAM在通道上构建多频率通道改善全局平均池化,利用一维卷积代替全连接层聚合相邻通道间的信息,减少模型参数;然后,在空间上融合Inception v3思想和特征分层思想改善空洞卷积;最后,在船舶涂装缺陷样本数据增强的基础上,对ICBAM-IYOLOv4进行测试.实验结果表明:ICBAM-IYOLOv4相比其他算法,其损失值更低、收敛更快;平均精度均值(mean average precision, MAP)在训练集和测试集上分别提高了1.89%和1.91%. To address the problems of low efficiency of manual detection of ship defects and poor accuracy of traditional detection networks,a ship painting defect detection method based on Improved Convolutional Block Attention Module(ICBAM)is proposed.Firstly,YOLOv4 replaces the conventional convolution with depthwise separable convolution in the path aggregation network to form IYOLOv4,which reduces the model computation;secondly,ICBAM is incorporated into the Route layer of the path aggregation network of IYOLOv4 to form ICBAM-IYOLOv4,ICBAM builds multi-frequency channels on the channels to improve global average pooling,and one-dimensional convolution is used instead of the fully connected layer to aggregate information between adjacent channels and reduce model parameters;then,the idea of Inception v3 and the idea of feature layering were spatially fused to improve the dilated convolution;finally,ICBAM-IYOLOv4 is tested on the basis of enhanced data from ship painting defects samples.The experimental results show that ICBAM-IYOLOv4 has lower loss values and faster convergence than other algorithms,and the mean average precision(MAP,Mean Average Precision)is improved by 1.89%and 1.91%on the training and test sets,respectively.
作者 庞博 卜赫男 李磊 周宏根 景旭文 PANG Bo;BU He′nan;LI Lei;ZHOU Honggen;JING Xuwen(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期1-8,共8页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 工信部高技术船舶科研项目(MC-202003-Z01-02,CJ07N20) 国防基础科研攻关项目(JCKY2021414B011)。
关键词 船舶涂装 缺陷检测 特征分层 多频率通道 注意力模块 深度可分离卷积 一维卷积 ship painting defect detection feature stratification multi-frequency channels attention module depthwise separable convolution one-dimensional convolution
  • 相关文献

参考文献2

二级参考文献8

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部