摘要
在轨道交通自动控制系统领域,尤其是信号配时的多目标优化方面,现有技术在动态复杂环境的适应性方面存在不足。研究提出多目标配时优化算法,并且对信号配时的三种指标进行权重赋值,最后通过周期时长与绿信比对算法粒子位置进行更新。研究结果显示,该算法经过100次迭代训练后,在通行能力、平均延误时间和平均停车次数上均有显著改善。在高峰期,优化后算法的平均延误时长为31.27 s,平均停车次数为0.77次,分别下降了1.29 s和0.05次;在平峰期,优化后算法的平均延误时间为17.59 s,平均停车次数为0.61次,分别下降0.75 s和0.02次。结果表明,研究提出的方法能在轨道交通效率和安全性方面具有较好的提升效果。
In the field of automatic control systems for rail transit,especially in the multi-objective optimization of signal timing,existing technologies have shortcomings in adaptability to dynamic and complex environments.a multi-objective timing optimization algorithm is proposed,assigns weights to the three indicators of signal timing,and finally updates the particle positions of the algorithm through cycle duration and green signal comparison.The research results show that after 100 iterations of training,the algorithm has significantly improved in terms of traffic capacity,average delay time,and average number of stops.During peak hours,the average delay time of the optimized algorithm was 31.27 seconds,and the average number of stops was 0.77,a decrease of 1.29 seconds and 0.05 times,respectively;During peak hours,the average delay time of the optimized algorithm was 17.59 seconds,with an average of 0.61 stops,a decrease of 0.75 seconds and 0.02 stops,respectively.The results indicate that the proposed method has a good improvement effect on the efficiency and safety of rail transit.
作者
付兵
李翔
赖成红
段立正
FU Bing;LI Xiang;LAI Chenghong;DUAN Lizheng(Chengdu Industrial Vocational Technical College,Chengdu 610218,Chian;Sichuan UNITTEC Intellingent&control Co.,LTD.,Chengdu 610000,China)
出处
《自动化与仪器仪表》
2024年第7期115-119,共5页
Automation & Instrumentation
关键词
轨道交通
信号配时
多目标
周期变量
rail transit
signal timing
multi objective
periodic variable