期刊文献+

基于改进聚类算法的电能计量表故障检测方法

Fault detection method of electric energy meter based on improved clustering algorithm
原文传递
导出
摘要 传统的电能计量装置故障监测方式为周期性现场校验,该方式存在着运行管理粗放不规范、工作效率低、故障发现及排查难度大、监测时效性差等问题。为了解决电能计量故障检测准确性低的问题,提出基于改进聚类算法的电能计量表故障检测方法。该方法采用量子机制改进后的聚类算法,结合自回归积分滑动平均算法清洗数据中异常值并分类数据,将分类数据输入贝叶斯B样条故障检测算法,通过计算故障率完成电能计量表故障检测。实验结果显示,该方法的AUC面积最大,表明检测精度高,并且检出故障点数量与实际一致,检测时间在5 s以内,说明该方法提高了检测准确性的同时,提高了检测效率。 The traditional fault monitoring method for electric energy metering devices is periodic on-site verification,which has problems such as extensive and non-standard operation management,low work efficiency,difficulty in fault detection and troubleshooting,and poor monitoring timeliness.In order to solve the problem of low accuracy in fault detection of electric energy metering,an improved clustering algorithm based fault detection method for electric energy metering meters is proposed.This method adopts a clustering algorithm improved by quantum mechanics,combined with the autoregressive integral moving average algorithm to clean the outliers in the data and classify the data.The classified data is input into the Bayesian B-spline fault detection algorithm,and the fault detection of the electric energy meter is completed by calculating the fault rate.The experimental results show that the AUC area of this method is the largest,indicating high detection accuracy,and the number of detected fault points is consistent with the actual situation.The detection time is within 5 seconds,indicating that this method improves both detection accuracy and detection efficiency.
作者 严华江 庄琛 马赟婷 安东 YAN Huajiang;ZHUANG Chen;MA Yunting;An dong(Marketing Service Center,State Grid Zhejiang Electric Power Limited Company,Hangzhou 310007,China)
出处 《自动化与仪器仪表》 2024年第7期188-191,195,共5页 Automation & Instrumentation
基金 2022年度浙江省电力重点科研特色实践类项目(2022GKTSCX018)。
关键词 数据清洗 量子机制 差异性度量测度 贝叶斯B样条算法 韦伯分布 聚类算法 data cleaning quantum mechanism difference measurement bayesian B-spline algorithm weber distribution clustering algorithm
  • 相关文献

参考文献17

二级参考文献138

共引文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部