期刊文献+

基于大数据的高校教务域数仓应用研究

Applicatioin reserch of academic affairs domain data warehouse in colleges and universities based on big data
下载PDF
导出
摘要 针对当前业界大数据方法论的实践对高校场景化业务支撑有限、大数据视角的教育数据价值未能得到有效挖掘利用的问题,探索高校数据仓库建设方法路径。以构建可持续迭代的智慧校园数字基础设施为目标,以大数据维度建模方法论为基础,结合高校数据自身的特点,以教务域数仓的建设为例,通过深入了解源业务系统、丰富数仓建模知识,总结出了一套对高校来说切实可行的建模思路和方法论,其创新性主要体现在数据整合、标准化数据管理、建模方法和建设方式等方面。该方法为发掘数据价值、促进校级能力整合、推动高校实现数字化转型提供了基本保障。 In response to the limited support from current industry practices of big data methodologies to scenario-based business in higher education institutions,and the underutilization of the educational data value from a big data perspective,this paper aims to explore the methodological approach to constructing data warehouses in universities.The goal is to establish a sustainable and itera⁃tive digital infrastructure for constructing smart campuses.Based on the big data dimensional modeling methodology and combined with the characteristics of university data,the construction of educational domain data warehouses was taken as an example.By delv⁃ing into the understanding of source business systems and enriching knowledge of data warehousing modeling,this paper summarizes a set of modeling ideas and methodologies that are practical and feasible for universities.Its innovation mainly lies in data integration,standardized data management,modeling methods,and construction methods.This method provides a basic guarantee for mining data value,improving integration of school-level capabilities,and promoting digital transformation of universities.
作者 何海涛 杨敏 HE Haitao;YANG Min(School of Network and Information Center,Sun Yat-sen University,Guangzhou 510275,China)
出处 《中国科技论文》 CAS 2024年第7期812-819,共8页 China Sciencepaper
基金 2019年校园信息化重点发展项目(IS201915) 2021年校园信息化重点发展项目(II202109) 2022年校园信息化重点发展项目(IS202221)。
关键词 智慧校园 数字化转型 分布式数据仓库 维度建模 教务域 smart campus digital transformation distributed data warehouse dimensional modeling educational administration domain
  • 相关文献

参考文献7

二级参考文献46

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部