期刊文献+

三管推挽双向DC-DC变换器电流应力优化控制

Current Stress Optimal Control Strategy of Three-switch Push-Pull Bidirectional DC-DC Converter
下载PDF
导出
摘要 为提高三管推挽双向全桥变换器运行效率,提出了一种峰值电流应力优化控制策略。首先,分析了TPBFC变换器扩展移相控制(Extended Phase-shift Control,EPS)下的基本运行模态,推导了系统传输功率与峰值电流应力表达式。进一步,采用拉格朗日函数构建了变换器传输功率与峰值电流应力的约束模型,推导了各运行模态下满足峰值电流应力最小的移相比组合。在搭建的500 W样机上的实验表明,采用所提出的方法使变换器峰值效率提升了2%。 To improve the operation efficiency of three-switch push-pull bidirectional full bridge converter(TPBFC),this paper proposes a peak current stress optimization control strategy.First the basic operation mode of TPBFC converter under extended phase shift control(EPS)is analyzed,and the expressions of system transmission power and peak current stress are derived.Furthermore the constraint model of transmission power and peak current stress of the converter is constructed by using Lagrange function,and the phase shift ratio combinations enabling the minimum peak current stress under all the operation modes are derived.The adoption of the proposed strategy is found in an experiment on a self-built 500 W prototype to achieve a peak efficiency increase by 2%for the converter.
作者 陈琦 伍群芳 孙志峰 王玉珮 CHEN Qi;WU Qunfang;SUN Zhifeng;WANG Yupei(China Energy Engineering Group Jiangsu Power Design Institute Co.,Ltd.,Nanjing 211100,China;Jiangsu Key Laboratory of New Energy Generation and Power Conversion,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《电工技术》 2024年第11期69-72,76,共5页 Electric Engineering
基金 江苏省自然科学青年基金(编号BK20210305)。
关键词 推挽变换器 DC-DC变换器 电流应力 拉格朗日 扩展移相 push-pull converter DC-DC converter current stress Lagrange EPS
  • 相关文献

参考文献4

二级参考文献108

  • 1童亦斌,吴峂,金新民,陈瑶.双向DC/DC变换器的拓扑研究[J].中国电机工程学报,2007,27(13):81-86. 被引量:125
  • 2国家能源局.国家能源局关于推进新能源微电网示范项目建设的指导意见[EB/OL].北京:国家能源局,2015[2015-09-29].http://zfxxgk.nea.gov.on/aut087/-201507/t20150722-1949.htm.
  • 3国家能源局.国家能源局关于印发配电网建设改造行动计划(2015-2020年)的通知[EB/OL].北京:国家能源局,201512015-09-29].http://zfxxgk.Nea.gov.cn/auto-84/201508/t20150831-1958.htm.
  • 4Dragicevic T, Vasquez J C, Guerrero J M, et al. Advanced LVDC electrical power architectures and microgrids: A step toward a new generation of power distribution networks[J]. IEEE Electrif. Mag., 2014, 2(1): 54-65.
  • 5Tsai-Fu W. Guest Editorial. Special issue on power electronics in DC distribution systems[J]. IEEE Trans. on Power Electronics, 2013, 28(4): 1507-1508.
  • 6Josep M Guerrero. Guest editorial. Special section on smart DC distribution systems[J]. IEEE Trans. on Smart Grid, 2014, 5(5): 2473-2475.
  • 7IEEE Power Electronics Society. 2015 IEEE First International Conference on DC Microgrids (ICDCM) [EB/OL]. Atlanta: IEEE Eplore Digtal Library, 2015 [2015-09-29] . http://ieeexplore.ieee.org/xpl/mostR ecentIssue.jsp? punu- mber =7139319.
  • 8Bifaretti S, Zanchetta P, Watson A, et al. Advanced power electronic conversion and control system foruniversal flexible power management[J] . IEEE Transactions on Smart Grid, 2011, 2(2): 231-243.
  • 9Alex H, Mariesa L C, Gerald T H, et al. The future renewable electric energy delivery and management system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.
  • 10Weiss R, Ott L, Boeke U 1. Energy efficient low-voltage DC-grids for commercial buildings[C]//2015 IEEE First International Conference on DC Microgrids. Atlanta, USA: 2015: 154-158.

共引文献546

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部