期刊文献+

采用统计线性回归的改进ATBI-GMPHD滤波

Improved ATBI-GMPHD filter using statistical linear regression
下载PDF
导出
摘要 提出一种改进的自适应新生目标GM-PHD算法。该算法以存活目标的量测更新权值构建“似然函数”,通过该函数确定量测来源并对新生目标权值做重分配,有效解决了归一化失衡问题。在量测方程高度非线性情况下,引入统计线性回归方法对量测方程进行线性化近似,求解新生目标预测均值和协方差。仿真结果表明,在新生目标信息先验缺失时,改进后的算法具有良好的跟踪精度和较低的计算量。 Proposing an improved adaptive nascent target GM-PHD algorithm.The algorithm constructs a“likelihood function”based on the updated weights of the surviving targets,through which it determines the source of the measurements and redistributes the weights of the newborn targets,thus effectively solving the problem of normalisation imbalance.At the same time,a statistical linear regression method is introduced to linearise the approximation of the measurement equations in the highly non-linear case of the measurement equations to achieve the solution of the predicted mean and covariance of the newborn target.Computer simulation results show that the improved algorithm has good tracking accuracy and low computational effort when the nascent target information is missing a priori.
作者 池桂林 胡磊力 周德召 CHI Guilin;HU Leili;ZHOU Dezhao(Science and Technologyon Electro-Optical Control Laboratory,Luoyang 471000,China;Luoyang Institute of Electro-Optical Equipment,AVIC,Luoyang 471000,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第S01期269-275,共7页 Journal of Ordnance Equipment Engineering
关键词 多目标跟踪 概率假设密度 自适应新生目标强度 随机有限集 multi-target tracking probability hypothesis density filter adaptive target birth intensity random finite set
  • 相关文献

参考文献7

二级参考文献73

  • 1刘宗香,谢维信,黄敬雄,杨烜.被动传感器网基于模糊综合贴近度的航迹起始[J].电子学报,2007,35(8):1476-1480. 被引量:13
  • 2Syed Ahmed Pasha, Hoang Duong Tuan, Ba-Ngu Vo. Nonlinear Bayesian filtering using the unscented linear fractional transfor- mation model [J]. IEEE Trans Signal Processing,2010,58(2) : 477 - 489.
  • 3Chenglin Wen,Zhiliang Li, Xiaobin Xu.A new method for ex- Wacfing fuzzy evidence from fuzzy information based on the random set theory [ A]. 7th World Congress on Intelligent Con- trol and Automation [ C ]. Chongqing, China: IEEE, 2008. 4999 - 5003.
  • 4Mahler R. Statistical Multisource-Mulfitarget Information Fusion [ M]. Boston: Artech House Publishers, 2007.565 - 692.
  • 5BVo, S Singh, A Doucet. Sequential monte carlo methods for multi-target filtering with random finite sets [ J ]. IEEE Trans Aerospace and Electronic Systems,2005,41 (4) : 1224 - 1245.
  • 6J MuUane,B -N Vo,M Adams,B -T Vo.A random finite set approach to bayesian SLAM [J].IEEE Trans Robotics,2011, 27(2) :268 - 282.
  • 7Kusha Panta, Daniel Clark, Ba-Ngu Vo. Data association and management for the Gaussian mixture probability hypothesis[J].IEEE. Trans Aerospace and Electronic Systems,2009,45 (3) : 1003 - 1016.
  • 8Ba-Ngu Vo, Wing-Kin Ma. The Gaussian mixture probability hypothesis density filter [ J ]. IEEE. Tram Signal Processing, 2006,54(11) :4091 - 4014.
  • 9Ienkaran Arasaramarn, Simon Haykin. Cubature Kalman filters [ J]. IEEE Tram Autom Control,2009,54(6) : 1254- 1269.
  • 10K Panta, B Vo, S Singh. Novel data association technique for the probability hypothesis density filter [ J]. IEEE Tram Aerospace and Electronic Systems,2007,43(2) :556- 570.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部