摘要
光滑点是巴拿赫空间几何理论中的重要概念,在估计理论,概率论等领域有重要应用。本文中,首先用凸模引入赋s-范数Orlicz空间对偶空间范数,然后讨论对偶范数的范数可达性,在此基础上给出赋s-范数Or-licz空间的支撑泛函的显式形式,最后给出赋s-范数Orlicz空间光滑点的判据。
Smooth points are important concepts in Banach space geometry theory,which have important applications in estimation theory,probability theory and other fields.In this paper,firstly the dual norm of Orlicz space endowed with s-norm is introduced by convex model and then the norm attainability of dual norm is discussed.On this basis,the explicit form of support functional for Orlicz space endowed with s-norm is given.Finally,a criterion for smooth points in Orlicz space endowed with s-norm is presented.
作者
徐浩
王俊明
XU Hao;WANG Junming(School of Science,Harbin University of Science and Technology,Harbin 150080,China)
出处
《哈尔滨理工大学学报》
CAS
北大核心
2024年第2期147-152,共6页
Journal of Harbin University of Science and Technology
基金
国家自然科学基金(11871181).