摘要
针对钢铁企业烧结机煤气消耗量预测精度较低的问题,研究建立差分自回归移动平均模型(ARIMA)、长短期记忆网络模型(LSTM)和极端梯度提升模型(XGBoost),用于预测烧结机的高炉煤气消耗量,利用钢铁联合企业的实际数据对比验证了预测模型性能。结果表明,XGBoost模型的预测精度高于ARIMA模型和LSTM模型。XGBoost模型的MAPE为3.45%,RMSE为703.53 m^(3)/min,R^(2)为99.91%,鲁棒性和泛化能力较强。此外,为了强化预测模型与烧结机不同运行状态间的联系,对烧结机不同运行状态的煤气消耗量进行预测。LSTM模型在烧结机正常生产状态表现出最好的预测效果,XGBoost模型则在烧结机减产和增产状态预测效果最佳。
To solve the problem of low prediction accuracy of sinter strand gas consumption in iron and steel industry,autoregressive integrated moving average model(ARIMA),long short-term memory network model(LSTM)and extreme gradient boosting model(XGBoost)are established to predict the blast furnace gas consumption.The performance of the prediction models is verified by comparing the actual data of iron and steel industry.The results show that the prediction accuracy of XGBoost model is higher than ARIMA model and LSTM model.The mean absolute percentage error of XGBoost model is 3.45%,root mean square error is 703.53 m^(3)/min,R^(2) is 99.91%,and the robustness and generalization ability of XGBoost model are strong.In addition,in order to strengthen the connection between the prediction models and different operating states of sinter strand,the gas consumption of different operating states is predicted.LSTM model shows the best prediction effect in normal production state of sinter strand,while XGBoost model shows the best prediction effect in production reduction and production increase state.
作者
李涛
王盛民
刘刚
王桂伟
Li Tao;Wang Shengmin;Liu Gang;Wang Guiwei(Zhongwei National Engineering Research Center for Coking Technology Co.,Ltd.;Rizhao Certification and Inspection Co.,Ltd.)
出处
《冶金能源》
北大核心
2024年第4期54-58,共5页
Energy For Metallurgical Industry
关键词
钢铁企业
烧结机
煤气消耗量预测
数据模型
运行状态
iron and steel industry
sinter strand
gas consumption prediction
data model
operating state