摘要
近年来,具有独特电子效应和协同效应的异质界面工程策略在扩展催化功能和提高本征活性方面显示出较大的应用潜力.其中,具有晶型/无定形(c/a)异质结构的电催化剂,由于结构上的巨大差异,展现出显著的催化活性.然而,c/a-异质界面的可控调控及其与电催化性能的内在联系仍缺乏系统研究.因此,本文采用“酸刻蚀-气相磷硫化-淬火”方法,合成了具有可调控c/a异质界面的q-CoPS材料,并将其应用于碱性整体水分解.同时,通过控制淬火的初始温度,实现了对CoPS纳米棒中c/a比例的有效调控.一般来说,在晶型材料中,表面催化往往发生在固定的晶面上.而无定形材料可以同时满足体积和表面的催化.同时,无定形材料具有柔韧性,在催化反应过程中可以转化为任何需要的其他形式,因此在耐腐蚀方面也具有较好的自愈性能.此外,无定形材料还具有丰富的缺陷,运用缺陷工程可以带来一定的性能提升.因此,二者的协同作用可以提升催化剂的催化性能.本文创新性地提出了通过改变淬火初始温度对CoPS纳米棒中c/a比进行调控.采用“酸刻蚀-气相磷硫化-淬火”方法,成功制备了具有独特c/a-CoPS核壳异质结构的q-CoPS纳米棒.随着淬火初始温度的升高,无定形CoPS壳的面积也在逐渐增大.这可能是由于处于非平衡状态的磷硫化物在超低温液氮中突然淬火,处于热运动的Co,P和S原子会迅速冷却,趋向于形成无序的CoPS无定形材料.值得注意的是,制备得到的q-CoPS纳米棒具有合适的c/a含量比,提供了丰富的c/a界面活性位点,并优化了Co位点的电子构型.在析氢反应(HER)中,q-CoPS/CF仅需90 m V的过电位即可以达到1000 m Acm^(-2)的工业级电流密度,结果优于先进的Pt/C.同时,q-CoPS/CF在肼氧化反应(HzOR)中,仅0.06 V时即可实现1000 m Acm^(-2)的电流密度.密度泛函理论计算表明,在HER和HzOR中,界面处的Co原子的内在活性远高于P原子和S原子,c/a-异质界面处活性位点的能垒远低于晶型CoPS和无定形CoPS.此外,Co位点作为c/a界面的双功能活性位点,有效地优化了HER和HzOR的反应动力学.综上所述,q-CoPS/CF催化剂电催化性能的提升主要是由于其具备高活性的CoPS、合适的晶型/无定形(c/a)比例和较大的比表面积.本文为设计具有c/a异质结构的高活性电极提供参考,为进一步探索c/a异质结构的演化和确定c/a界面的活性位点提供借鉴.
Directional construction of crystalline/amorphous(c/a)-phosphosulfide heterostructures with exceptional intrinsic activity through a facile strategy is challenging.In this study,we synthesized q-CoPS nanorods with a unique c/a-CoPS core-shell heterostructure through the‘gas-phase phosphorus vulcanization-quenching’treatment.This work also innovatively masters the regulation of the initial quenching temperature to alter the c/a ratio of the CoPS nanorods.Surprisingly,with increasing initial quenching temperature,the area of the amorphous CoPS shell gradually increases.Density functional theory calculations reveal that the Co sites at the c/a-heterointerface,as the difunctional c/a-interface active site,effectively optimize the kinetics of the hydrogen evolution reaction(HER)and hydrazine oxidation reaction(HzOR).As anticipated,q-CoPS/CF requires an overpotential of only 90 mV at a current density of 1000 mA cm^(-2)for the alkaline HER,which is much lower than that required using the state-of-the-art Pt/C catalyst.Additionally,q-CoPS/CF achieves a current density of 1000 mA cm^(-2)at only 0.06 V in the HzOR.Overall,this work proposes an efficient strategy for developing a bifunctional electrocatalyst with a unique c/a-heterostructure to address future energy needs.
作者
陈晓
杜云梅
杨宇
刘康
赵晋灵
夏晓丹
王磊
Xiao Chen;Yunmei Du;Yu Yang;Kang Liu;Jinling Zhao;Xiaodan Xia;Lei Wang(Key Laboratory of Eco-chemical Engineering,Ministry of Education,International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China;College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China;College of Environment and Safety Engineering,Qingdao University of Science and Technology,Qingdao 266042,Shandong,China;Qingdao Haifa Environmental Protection Industry Holdings Co.,Ltd.Qingdao 266000,Shandong,China)
基金
国家自然科学基金(52072197,52302274)
111工程(D20017)
山东省优秀青年基金(ZR2019JQ14)
山东省自然科学基金(ZR2022QE098)
科技创新重大专项(2019JZZY020405)
山东省自然科学基金重大基础研究项目(ZR2020ZD09)
山东博士后创新项目(SDCX-ZG-20220307)
青岛市博士后应用研究项目(04030431060100)
山东省双百人才计划(WST2020003).
关键词
q-CoPS
c/a-异质结构
淬火
析氢反应
肼氧化反应
q-CoPS
c/a-heterostructures
Quenching
Hydrogen evolution reaction
Hydrazine oxidation reaction