期刊文献+

基于改进的最大熵算法与滚动引导滤波的图像融合算法

Image Fusion Based on Improved Maximum Entropy Segmentation Algorithm and Rolling Guidance Filter
原文传递
导出
摘要 随着应用环境的改变,大多数红外与可见光图像融合算法的工程化部署能力普遍较差,存在目标提取不充分、细节丢失、算法复杂、效率低和适用性差等问题。针对上述问题,提出了一种基于改进的最大熵算法与滚动引导滤波的红外与可见光图像融合算法。首先,使用改进的最大熵算法对红外目标进行提取,并利用滚动引导滤波的尺度感知和边缘保持特性将可见光图像和红外图像分解为基础层和细节层;然后,提取出的红外目标和可见光基础层图像通过基础层融合规则得到基础层融合图像;最后,基础层融合图像通过细节层融合规则得到最终的融合图像。实验结果表明,所提算法的融合图像目标明确、纹理清晰、细节信息丰富,且算法简单高效、适用性强。相比其他4种对比算法,所提算法在主、客观评价上均有优势,具有一定的工程化部署能力。 With the change of application environment,the engineering deployment capability of numerous fusion algorithms for infrared and visible images is generally poor.These algorithms exhibit various shortcoming,including insufficient target extraction,loss of details,algorithmic complexity,low efficiency,and limited applicability.To address the aforementioned challenges,a fusion method for infrared and visible images is proposed by leveraging an improved maximum entropy algorithm and a rolling guided filter.First,infrared targets are extracted through using improved maximum entropy algorithm,and the visible image and infrared image are decomposed into basic layer and detail layer through using the scale-awareness and edge-preservation characteristics of rolling guided filter.Then,the base layer fusion image is generated from the extracted infrared targets and the base layer image of visible light using the base layer fusion rules.Finally,the final fusion image is derived from the base layer fusion image using the detail layer fusion rules.Experimental results evidently demonstrate that the proposed algorithm yields fused images with well-defined targets,distinct textural details,and abundant information.Moreover,the proposed algorithm stands out for its simplicity,efficiency,and broad applicability.Compared with the other four algorithms,the proposed algorithm demonstrates superior performance in both subjective and objective evaluations,andhas certain engineering gdeployment capability.
作者 蒋杰伟 刘尚辉 金库 巩稼民 JIANG Jiewei;LIU Shanghui;JIN Ku;GONG Jiamin(School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;College of Communication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2024年第3期117-123,共7页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(62276210) 陕西省自然科学基础研究计划项目(2022JM-380)。
关键词 图像融合 细节增强 最大Shannon熵 滚动引导滤波 image fusion detail enhancement maximum Shannon entropy rolling guided filter
  • 相关文献

参考文献1

二级参考文献6

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部