期刊文献+

基于改进PSO算法设计的TFLN平台偏振不敏感光栅耦合器

Polarization-insensitive grating coupler designed for TFLN platform based on improved PSO algorithm
下载PDF
导出
摘要 针对光栅耦合器存在偏振依赖性问题,在薄膜铌酸锂(TFLN)平台上相继设计了标准型和改进型偏振不敏感光栅耦合器。在设计过程中,首先对粒子群(PSO)算法进行了改进,然后利用改进后的PSO算法对光栅参数进行了优化,包括光栅周期、占空比、刻蚀深度以及入射角等关键参数。最后,设计了偏振不敏感啁啾光栅耦合器,并通过线性啁啾调节有效折射率,从而显著提升了耦合效率和偏振不敏感带宽。仿真结果表明:在波长为1 544 nm时耦合效率最高,偏振不敏感啁啾光栅耦合器的横电(TE)、横磁(TM)模式耦合损耗分别为-4.88、-5.05 dB;在1 500~1 580 nm波长内偏振相关损耗(PDL)小于0.5 dB,偏振不敏感带宽为45 nm。 Aming at the polarization-dependency issue of grating couplers,standard and improved polarization-insensitive grating couplers are successively designed on the thin film lithium niobate(TFLN)platform.During the design process,the particle swarm optimization(PSO)algorithm is first improved,and then the improved PSO algorithm is used to optimize the grating parameters,including critical parameters such as grating period,duty cycle,etching depth,and incident angle.Finally,a polarization-insensi-tive chirped grating coupler is designed,and the effective refractive index is adjusted through linear chirp,significantly improving the coupling efficiency and polarization-insensitive bandwidth.The simulation results show that the coupling efficiency is the highest at the wavelength of 1544 nm,and the coupling losses of the transverse electric(TE)and transverse magnetic(TM)modes of the polarization-insensitive chirped grating coupler are-4.88 and-5.05 dB,respectively.The polarization-dependent loss(PDL)is less than 0.5 dB within the wavelength range of 1500 nm to 1580 nm,and the polarization-insensitive bandwidth is 45 nm.
作者 李坚平 邓冶 王烈 张振荣 LI Jianping;DENG Ye;WANG Lie;ZHANG Zhenrong(School of Computer and Electronic Information,Guangxi University,Nanning 530004,China;Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,China;Key Laboratory of Multimedia Communications and Information Processing of Guangxi Higher Education Institutes,Nanning 530004,China)
出处 《光通信技术》 北大核心 2024年第4期9-14,共6页 Optical Communication Technology
基金 广西重点研发计划项目(桂科AB22080048)资助。
关键词 薄膜铌酸锂 偏振不敏感 光栅耦合器 啁啾 改进粒子群算法 thin film lithium niobate polarization-insensitive grating coupler chirp improved particle swarm optimization algo-rithm
  • 相关文献

参考文献3

二级参考文献22

  • 1高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948.
  • 3MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111.
  • 4KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770.
  • 5KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J] IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(6) 663-675.
  • 6ZHANG W, LIU J, NIU Y Q. Quantitative prediction of MHC-II binding affinity using particle swarm optimization[J]. Artificial Intelligence in Medicine,2010,50(2): 127-132.
  • 7GHEITANCHI S, ALI E STIPIDIS E. Particle swarm optimization for adaptive resource allocation in communication networks[J]. EURASIP Journal on Wireless Communications and Networking, 2010. 1-13.
  • 8BERGH E An Analysis of Particle Swarm Optimizers[D]. Department of Computer Science, University of Pretoria, South Africa, 2006 118-123.
  • 9JIAO B, LIAN Z G, GU X S. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons & Fractals, 2008, 37(3) 698-705.
  • 10MENG H J, ZHENG P, WU R Y, et al. A hybrid particle swarm algorithm with embedded chaotic search[A]. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems[C]. Singapore, 2004. 367-371.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部