摘要
针对基于深度学习的非标定光度立体方法,设计了一种基于自注意力和多重特征融合的网络模型。该模型在光照估计网络中引入了自注意力机制,用于帮助网络理解图像长距离像素间的依赖关系,提升网络对图像深层特征的感知能力。同时,为了提升在多图像输入时的特征融合效果,设计了一种基于多重最大池化和残差模块的法线恢复网络。该方法在DiLiGenT光度立体数据集上测试的光源方向和法向的平均角度误差分别为3.2和8.5。
In response to deep learning-based uncalibrated photometric stereo method,this paper proposes a network model based on self-attention and multi-feature fusion.This model introduces a self-attention mechanism into the illumination estimation network to help the network understand the long-range pixel dependencies in images,enhancing the network's perception of deep image features.Additionally,to improve the feature fusion effect when multiple images are input,a normal recovery network based on multiple max-pooling and residual modules is designed.The proposed method achieves average angular errors of 3.2 for light source direction and 8.5 for surface normal on the DiLiGenT photometric stereo dataset.
作者
方明权
宋滢
FANG Mingquan;SONG Ying(School of In f ormation Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《软件工程》
2024年第8期46-50,共5页
Software Engineering
关键词
光度立体
深度学习
自注意力
残差网络
photometric stereo
deep learning
self-attention
residual network