期刊文献+

NOMA系统下基于高阶累积量的叠加信号调制识别

Modulation Classification of Superimposed Signal in NOMA Systems Based onHigh-order Cumulants
下载PDF
导出
摘要 为解决非正交多址系统中的信号调制识别问题,利用高阶累积量的特性,提出了一种基于高阶累积量的调制识别算法,主要包含特征提取、概率密度函数构建和信号分类三个模块。仿真结果表明,与已有算法相比,所提出的基于高阶累积量的调制识别算法,在中低信噪比下可有效改善系统的识别性能。最后,利用浮点数计算了所提出算法的复杂度,结果表明该算法相较传统的最大似然检测算法复杂度大大降低,证明了该算法的有效性。 In order to solve the problem of signal modulation classification in non-orthogonal multiple access systems,a modulation classification algorithm based on high-order cumulants is proposed by using the characteristicsof high-order cumulants, which mainly includes feature extraction, probability density function constructionand signal classification. Simulation results show that, compared with the existing algorithm, the proposedmodulation classification algorithm based on high-order cumulants can effectively improve the system recognitionperformance under medium to low SNR. Finally, the complexity of the algorithm proposed is calculated usingfloating-point numbers. The results show that the complexity of the proposed algorithm is significantly reducedcompared to traditional maximum likelihood detection algorithms, proving the effectiveness of the algorithm.
作者 段婷玮 DUAN Tingwei(Beijing Institute of Tracking and Communication Technology,Beijing 10000,China)
出处 《移动通信》 2024年第7期116-121,共6页 Mobile Communications
关键词 调制识别 NOMA系统 叠加信号 高阶累积量 modulation classification NOMA systems superposed signals high-order cumulants
  • 相关文献

参考文献3

二级参考文献30

  • 1包锡锐,吴瑛,周欣.基于高阶累积量的数字调制信号识别算法[J].信息工程大学学报,2007,8(4):463-467. 被引量:23
  • 2SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429. doi: 10.1109/26.837045.
  • 3SHAKRA Mahmoud M, SHAHEEN Ehab M, BAKR Hossam Abou, et al. C3. Automatic digital modulation recognition of satellite communication signals[C]. 32nd National Satellite Communication Signals, Giza, 2015: 118-126. doi: 10.1109/ NRSC.2015.7117822.
  • 4WANG Lanxun, REN Yujing, and ZHANG Ruihua. Algorithm of digital modulation recognition based on support vector machines[C]. International Conference on Machine Learning and Cybernetics, Baoding, 2009: 980-983. doi: 10.1109/ICMLC.2009.5212366.
  • 5LIU Mingzhu, ZHAO Yue, Shi Lin, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin, 2014: 686-690. doi: 10.1109/~MCCC.2014.146.
  • 6FEHSKE A, GAEDDERT J, and REED J. A new approach to signal classification using spectral correlation and neural networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, 2005: 144-150. doi: 10.1109/DYSPAN. 2005. 1542629.
  • 7HAN Yu, WEI Guohua, SONG Chunyun, et al. Hierarchical digital modulation recognition based on higher-order cumulants[C]. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, 2012: 1645-1648. doi: 10.1109 /IMCCC.2012.398.
  • 8VISAN D A, JURIAN M, LITA I, et al. Modeling and simulation of an recognition system for digital modulated signals[C]. 32nd International Spring Seminar on Electronics Technology(ISSE), Brno, 2009: 1-5. doi: 10.1109/ISSE.2009. 5206992.
  • 9YAJNANARAYANA V and AHMED I Z. Novel method for blind constellation detection using template based classifier for quadrature digital modulation schemes[C]. 10th International Conference on Electronic Measurement & Instruments (ICEMI), Chengdu, 2011: 1-4. doi: 10.1109/ ICEMI.2011.6037934.
  • 10RAMKUMAR B. Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 27-45. doi: 10.1109/MCAS.2008.931739.

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部