摘要
为解决非正交多址系统中的信号调制识别问题,利用高阶累积量的特性,提出了一种基于高阶累积量的调制识别算法,主要包含特征提取、概率密度函数构建和信号分类三个模块。仿真结果表明,与已有算法相比,所提出的基于高阶累积量的调制识别算法,在中低信噪比下可有效改善系统的识别性能。最后,利用浮点数计算了所提出算法的复杂度,结果表明该算法相较传统的最大似然检测算法复杂度大大降低,证明了该算法的有效性。
In order to solve the problem of signal modulation classification in non-orthogonal multiple access systems,a modulation classification algorithm based on high-order cumulants is proposed by using the characteristicsof high-order cumulants, which mainly includes feature extraction, probability density function constructionand signal classification. Simulation results show that, compared with the existing algorithm, the proposedmodulation classification algorithm based on high-order cumulants can effectively improve the system recognitionperformance under medium to low SNR. Finally, the complexity of the algorithm proposed is calculated usingfloating-point numbers. The results show that the complexity of the proposed algorithm is significantly reducedcompared to traditional maximum likelihood detection algorithms, proving the effectiveness of the algorithm.
作者
段婷玮
DUAN Tingwei(Beijing Institute of Tracking and Communication Technology,Beijing 10000,China)
出处
《移动通信》
2024年第7期116-121,共6页
Mobile Communications
关键词
调制识别
NOMA系统
叠加信号
高阶累积量
modulation classification
NOMA systems
superposed signals
high-order cumulants