期刊文献+

Construction of Z-scheme Cu-CeO_(2)/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole

原文传递
导出
摘要 The utilization of an efficient photocatalyst is crucial for the photocatalytic degradation of antibiotics in water through visible light,which is an imperative requirement for the remediation of water environments.In this study,a novel Cu-CeO_(2)/BiOBr Z-type heterojunction was synthesized by calcination and hydrothermal methods,and the degradation rate of sulfathiazole(STZ)antibiotic solution was studied using simulated illumination(300 W xenon lamp).The results indicated that 3%Cu-CeO_(2)/BiOBr achieved a degradation rate of 92.3%within 90 min when treating 20 mg/L STZ solution,demonstrating its potential for practical water treatment applications.Characterization using various chemical instruments revealed that 3%Cu-CeO_(2)/Bi OBr exhibited the lowest electron-hole recombination rate and electron transfer resistance.Furthermore,the utilization of ESR data and quenching experiments has substantiated the involvement of hydroxyl radicals(·OH)and superoxide radicals(·O_(2)^(-))as the primary active species.Consequently,a plausible degradation mechanism has been inferred.These findings offer a prospective approach for the development of heterojunction materials with appropriate band matching.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期167-172,共6页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.21471103,52372212)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部