期刊文献+

真空热压烧结制备CuCrFeMnNi高熵合金的退火软化行为

Annealing Softening Behavior of CuCrFeMnNi High-entropy Alloy via Vacuum HotpressingSintering
原文传递
导出
摘要 采用真空热压烧结工艺制备了CuCrFeMnNi高熵合金,对其进行(600~900℃)×12h的退火处理,通过显微硬度测试、物相分析和微观组织观察等研究了退火温度对合金组织结构以及显微硬度的影响。结果表明,CuCrFeMnNi高熵合金的烧结态硬度(HV)约为543,随退火温度升高,合金显微硬度逐渐降低。当退火温度为900℃时,CuCrFeMnNi高熵合金的显微硬度(HV)降至268,约是烧结态的52%,表明该合金经高温退火处理后发生了显著的退火软化现象。XRD结果表明,CuCrFeMnNi高熵合金由烧结态的FCC主相(FCC1+FCC2)+ρ相的多相结构转变为FCC2相的单相结构。因此,该合金退火软化主要归因于ρ相的分解。 CuCrFeMnNi high-entropy alloy was fabricated using vacuum hot pressing sintering process,and annealed at 600~900℃for 12 h.The effects of annealing temperature on microstructure and microhardness of alloy were investi⁃gated by microhardness testing,phase analysis and microstructure observation.The results reveal that the sintered hardness of CuCrFeMnNi high-entropy alloy is around 543 HV,which is gradually decreased with the increase of annealing temperature.With annealing temperature of 900℃,the microhardness is decreased to 268 HV,which is about 52%times of the sintered one,indicating that the alloy undergoes significant annealing softening after hightemperature annealing treatment.XRD patterns demonstrate that the CuCrFeMnNi high-entropy alloy is transformed from a multiphase structure of sintered FCC main phase(FCC1+FCC2)+ρphase to a single-phase structure of FCC2 phase.Therefore,the annealing softening is mainly attributed to the decomposition ofρphase.
作者 邵亚云 SHAO Yayun(Zhengzhou University of Industrial Technology,Zhengzhou 451150)
出处 《特种铸造及有色合金》 CAS 北大核心 2024年第7期935-939,共5页 Special Casting & Nonferrous Alloys
基金 教育部产学合作协同育人项目(220902557050855)。
关键词 高熵合金 硬度 退火温度 退火软化 相变 High-entropy Alloy Hardness Annealing Temperature Annealing Soften Phase Transformation
  • 相关文献

参考文献6

二级参考文献62

  • 1Fei LI,Lin ZHOU,Ji-Xuan LIU,Yongcheng LIANG,Guo-Jun ZHANG.High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J].Journal of Advanced Ceramics,2019,8(4):576-582. 被引量:56
  • 2Lin CHEN,Jing FENG.Influence of HfO2 alloying effect on microstructure and thermal conductivity of HoTaO4 ceramics[J].Journal of Advanced Ceramics,2019,8(4):537-544. 被引量:6
  • 3Zifan Zhao,Heng Chen,Huimin Xiang,Fu-Zhi Dai,Xiaohui Wang,Wei Xu,Kuang Sun,Zhijian Peng,Yanchun Zhou.(Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3[J].Journal of Materials Science & Technology,2020(4):167-172. 被引量:19
  • 4YANG B, CHEN L, CHANG K K, et al. Thermal and thermo- mechanical properties of Ti-AI-N and Cr-Al-N coatings [A]. // Int. J. Refract Met. Hard Mater[C]. 2012, 35: 235-240.
  • 5SHI J, MUDERS C M, KUMAR A, et al. Study on nanocompos- ite Ti-AI-Si-Cu-N films with various Si contents deposited by ca- thodic vacuum arc ion plating[J]. Appl. Surf. Sci. , 2012, 258 (24): 9 642-2 649.
  • 6RACHBAUER R, GENGLER J J, VOEVODIN A A, et al. Tern perature driven evolution of thermal, electrical, and optical proper ties of Ti-Al-N coatings[J]. Acta Mater., 2012, 60(5): 2 091- 2 096.
  • 7CHEN L, WANG S Q, DU Y, et al. Machining performance of Ti-Al-Si-N coated inserts[J]. Surf. Coat Technol. , 2010, 205(2) : 582-586.
  • 8LEWIN E, LOCH D, MONTAGNE A, et al. Comparison of Al- Si-N nanocomposite coatings deposited by HIPIMS and DC magne- tron sputtering[J]. Surf. Coat Tech. , 2013, 232: 680-689.
  • 9TSAI D C, HUANG Y L, LIN S R, et al. Structure and mechani- cal properties of (TiVCr)N coatings prepared by energetic bom- bardment sputtering with different nitrogen flow ratios[J]. J. Al- loy Compd. , 2011, 509(6): 3 141-3 147.
  • 10CHENG K H, LAI C H, LIN S J, et al. Structural and mechanical properties of multi-element (AICrMoTaTiZr)Nx coatings by reac- tive magnetron sputtering[J]. Thin Solid Films, 2011, 519(10): 3 185-3 190.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部