摘要
提出了MIC-K-median-LSTM(MK-LSTM)算法,用于对盾构掘进过程进行参数相关性分析和结构变形预测。首先,运用改进的MIC(MK)算法对涉及盾构掘进过程中的各参数与结构变形进行相关性分析;然后,在得到相关系数的基础上提出输入参数的修正方法;最后,通过LSTM模型对不同维度输入参数的预测效果进行分析,确定合理的输入参数维度。结果表明:盾构参数对既有结构变形的影响大于土体参数;MK算法可以有效降低计算复杂度和减小噪声对数据的影响,基于参数相关系数的数据前处理方法有利于提高模型的预测精度;MK-LSTM可以有效预测结构随时间的变形规律,考虑数据维度对预测精度的提升效果和计算效率的影响,进行实际工程预测时可以根据参数相关性大小进行维度删减。
Shield driving is a process of complicated machine-ground-structure interaction which is a function of a variety of parameters,study the correlation between the parameters can guide the construction.This paper proposed a MIC—K-median—LSTM(MK-LSTM)algorithm to analyze the correlation of parameters and predict the structural deformation.Firstly,the improved MIC algorithm is developed to analyze the correlation between the different input parameters and structural deformation,then to preprocess the input parameters based on their correlation coefficients.The prediction accuracy and efficiency using different dimensions of input parameters are analyzed through the LSTM model and the optimal input parameter dimensions are selected.The results show that:(1)The influence of the shield parameters on the existing structural deformation is larger than soil parameters;(2)the MK algorithm can effectively reduce the computational complexity and the impact of noise in raw data and the data pre-process is beneficial to improve prediction accuracy;(2)MK-LSTM algorithm can effectively predict the deformation law of the structure over time,considering the effect of the data dimension on the improvement of the prediction accuracy and the influence of the calculation efficiency,dimension pruning can be adopted in the actual engineering based on the parameter correlation.
作者
陈城
史培新
贾鹏蛟
董曼曼
CHEN Cheng;SHI Pei-xin;JIA Peng-jiao;DONG Man-man(School of Rail Transportation,Suzhou University,Suzhou 215000,China;School of Resources&Civil Engineering,Northeastern University,Shenyang 110819,China;Changshu Institute of Technology,Suzhou 215506,China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第6期1624-1633,共10页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金面上项目(52278405)
中国博士后科学基金项目(2021M702400)。
关键词
盾构隧道
机器学习
参数维度
参数相关性
变形
shield tunnelling
machine learning
parameter dimension
parameter correlation
deformation