期刊文献+

基于SFNet-F地物识别技术的农业大棚信息提取

Agricultural greenhouse information extraction based on SFNet-F land feature recognition technology
下载PDF
导出
摘要 农业大棚是现代设施农业的重要组成部分,准确识别和动态监测其分布为政府开展农业补贴核算和农业生产决策提供可靠科学依据。针对传统方法图像识别准确度不高的问题,本文提出了SFNet-F图像处理技术。通过收集不同类型、时相和区域的大棚数据集,把FixMatch半监督学习模块与SFNet结合,以提高样本库建立的效率和质量,并缩减成本,从而实现高精度半监督自适应分割。为了评估该方法的可行性,以河北省平泉市为研究区域,选取多个精度评价指标进行精度验证,并与U-Net、HBRNet和DeepLabV3+进行对比。结果表明,基于SFNet-F嵌入SuperMap平台深入学习模型可以大范围、快速、精准识别农业大棚,识别效果相较于传统方法,各项精度指标均为最优。 Agricultural greenhouses are an essential component of modern agricultural facilities,and accurate identification and dynamic monitoring of their distribution provide a reliable scientific basis for the government to carry out agricultural subsidy accounting and agricultural production decision-making.In this paper SFNet-F image processing technology is proposed to address the issue of low accuracy in traditional image recognition methods.By collecting agricultural greenhouse datasets of different types,periods,and regions,the FixMatch semi-supervised learning module is combined with SFNet to improve the efficiency and quality of sample library establishment,reduce costs,and achieve high-precision semi-supervised adaptive segmentation.In order to evaluate the feasibility of this method,multiple accuracy evaluation indicators were selected for accuracy validation in Pingquan city,Hebei province,and compared with U-Net,HBRNet,and DeepLabV3+.The results show that the deep learning model based on the SFNet-F embedded SuperMap platform can identify agricultural greenhouses on a large scale quickly and accurately.The recognition effect is the best in all accuracy indicators compared to several popular methods.
作者 付利钊 杨青岗 陈永立 韩金廷 杨歆佳 FU Lizhao;YANG Qinggang;CHEN Yongli;HAN Jinting;YANG Xinjia(The First Institute of Surveying and Mapping of Hebei Province,Shijiazhuang 050031,China;Hebei Xiongan SuperMap Software Technology Limited Liability Company,Baoding 071799,China)
出处 《测绘通报》 CSCD 北大核心 2024年第7期65-70,共6页 Bulletin of Surveying and Mapping
基金 国家重点研发计划(2021YFB3900803) 河北省自然资源厅科技项目(13000023P00EEC410172N)。
关键词 农业大棚 信息提取 SFNet-F 地物识别 agricultural greenhouse information extraction SFnet-F ground-objects identification
  • 相关文献

参考文献2

二级参考文献27

  • 1CHERIYADAT A M. Unsupervised Feature Learning for Aerial Scene Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 439-451.
  • 2VAILAYA A, FIGUEIREDO M A T, JAIN A K, et al. Image Classification for Content-based Indexing[J]. IEEE Transactions on Image Processing, 2001, 10(1) : 117-130.
  • 3SERRANO N, SAVAKIS A E, LUO Jiebo. Improved Scene Classification Using Efficient Low-level Features and Semantic Cues [ Jl. Pattern Recognition, 2004, 37 ( 9 ) 1773-1784.
  • 4OLIVA A, TORRALBA A. Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope [J]. International Journal of Computer Vision, 2001, 42 (3) : 145-175.
  • 5SIVIC J, ZISSERMAN A. Video Google= A Text Retrieval Approach to Object Matching in Videos[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003, 2: 1470-1477.
  • 6LAZEBNIK S, SCHMID C, PONCE J. Beyond Bags of Features= Spatial Pyramid Matching for Recognizing Natural Scene Categories [ C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY: IEEE, 2006: 2169-2178.
  • 7YANG Yi, NEWSAM S. Spatial Pyramid Co-occurrence for Image Classification [ C ] // Proceedings of IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 1465-1472.
  • 8BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet Allocation [ J ]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 9LIENOU M, MAITRE H, DATCU M. Semantic Annotation of Satellite Images Using Latent DirieMet Allocation[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7 (1): 28-32.
  • 10VADUVA C, GAVAT I, DATCU M. Latent Dirichlet Allocation for Spatial Analysis of Satellite Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5), 2770- 2786.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部