期刊文献+

基于蒙特卡洛法绘制医学实验室质控规则的功效函数图及应用研究

Power Function Graph of Quality Control Rules in Medical Laboratories Based on Monte Carlo Method and Its Application Research
下载PDF
导出
摘要 目的探讨如何绘制功效函数图,并绘制常见的几种质控规则对应的功效函数图以帮助医学实验室选择质控规则。方法收集中国临床检验常用质控规则,基于蒙特卡洛法绘制功效函数图,且将模拟结果与已有结果对比进行验证。结果蒙特卡洛法可简便绘制出最复杂的1_(3s)/2_(2s)/R_(4)s/4_(1s)/8_(x)规则的功效函数图,该方法结果准确度较高,但准确度和精密度与模拟次数呈正相关;统计七种常用的质控规则,其中使用比例最高质控规则的为1_(3s)/2_(2s)规则,其次为1_(3s)/2_(2s)/R_(4)规则,绘制出1_(3s)/2_(2s)/R_(4)7/4_(1s)/10_(x)规则功效函数图,并标出西格玛水平线以帮助实验室确定质控规则。结论蒙特卡洛法绘制功效函数图结果准确,医学实验室可利用该方法自行绘制以满足日常质控要求。 Objective To discuss how to plot a power function graph and draw power function graphs corresponding to common quality control rules to assist medical laboratories in selecting quality control rules.Methods Commonly used quality control rules in clinical laboratory testing in China were collected,power function graphs based on the Monte Carlo method were plotted,and the simulation results with existing results were compared and tested the reliability of the method.Results The Monte Carlo method could be used to easily plot power function graphs for the most complex quality control rules such as 1_(3s)/2_(2s)/R_(4)s/4_(1s)/8_(x).This method had a high level of accuracy,but the accuracy and precision were positively correlated with the number of simulations.In terms of statistical proportions of seven commonly used quality control rules,the 1_(3s)/2_(2s)rule had the highest usage proportion,followed by the 1_(3s)/2_(2s)/R_(4)s.The power function graph corresponding to the 1_(3s)/2_(2s)/R_(4)s/4_(1s)/10_(x)rule was plotted,and the sigma level lines were marked to assist the laboratory in selecting quality control rules.Conclusion The Monte Carlo method accurately plotted power function graphs,and medical laboratories could use this method to independently plot efficiency function graphs to meet quality control requirements.
作者 张津铭 王惠民 钟堃 袁帅 陈星彤 何法霖 ZHANG Jinming;WANG Huimin;ZHONG Kun;YUAN Shuai;CHEN Xingtong;HE Falin(Beijing Hospital/National Center of Gerontology/Institute of Geriatric Medicine,Chinese Academy of Medical Science/National Center for Clinical Laboratories/Beijing Engineering Research Center of Clinical Diagnosis,Beijing 100730,China;Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100730,China;Department of Clinical Laboratory,Affiliated Hospital of Nantong University,Jiangsu Nantong 226001,China)
出处 《现代检验医学杂志》 CAS 2024年第4期192-196,共5页 Journal of Modern Laboratory Medicine
基金 北京医院国家自然科学基金预研专项(BJ-2020-138) 国家重点研发计划(2021YFC1005304)。
关键词 质量管理 室内质控 功效函数图 quality management internal quality control power function graph
  • 相关文献

参考文献5

二级参考文献35

  • 1刘智敏.用MC仿真计算不确定度[J].中国计量学院学报,2005,16(1):1-7. 被引量:13
  • 2[4]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2001.
  • 3JCGM/WG1. Evaluation of measurement data - Guide to the expres- sion of uncertainty in measurement[M]. 1st Edition. 1993.
  • 4Risholm P, Fedorov A, Pursley J, et al. Probabilistic non-rigid regis- tration of prostate images : modeling and quantifying uncertainty [ J ]. Proc IEEE Int Symp Biomed Imaging, 2011:553-556.
  • 5Ebbert MTW, Bastien RRL, Boucher KM, et al. Characterization of uncertainty in the classification of multivariate assays: application to PAM50 centroid-based genomic predictors for breast cancer treatment plans[J]. J Clin Bioinform, 2011,1:37.
  • 6Demarco JJ, Chetty IJ, Solberg TD. A Monte Carlo tutorial and the application for radiotherapy treatment planning[J]. Med Dosim, 2002, 27( 1 ) :43-50.
  • 7Jiang SB, Pawlicki T, Ma CM. Removing the effect of statistical un- certainty on dose-volume histograms from Monte Carlo dose calcula- tions[J]. Phys Med Biol, 2000, 45(8):2151-2161.
  • 8Gonzalez A, Herrador M. Evaluation of measurement uncertainty in analytical assays by means of Monte Carlo simulation[J]. Talanta, 2004, 64(2) :415-422.
  • 9Ferreo A, Salicone S. A Monte Carlo-like approach to uncertainty es- timation in electric power quality measurements[ J]. The International Journal of Computation and Mathematics in Electrical and Electronic Engineering, 2004, 23 ( 1 ) : 119-132.
  • 10Siebert B, Sommer K. New development of the GUM and Monte Carlo techniques[J]. Teehnisches Messen, 2004,71 ( 2 ) : 67-80.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部