摘要
通过对电芯基础材料的发展、不同电芯集成技术对比以及电池包壳体轻量化方案的研究,深入探讨了提升电池包能量密度的技术路径。结果表明,单体电芯能量密度的提升依赖于基础材料科学的重大突破。预计在后锂离子时代,电芯密度有望达到1200 W·h/kg,而短期内,360 W·h/kg电芯密度的半固态电池技术有望率先实现量产,为电动汽车提供更长续驶里程和更高能量效率。此外,提高电芯的集成效率是另一个关键技术。无模组技术(CTP)、电池底盘一体化技术(CTC)和电池车身一体化技术(CTB)等方案,有望将电芯集成率提升至90%,空间利用率提升至70%,从而打破传统设计局限,实现电池包能量密度的显著提升。电池包壳体的轻量化设计同样至关重要,铝合金挤压型材、铝合金一体式压铸、超高强钢辊压和碳纤维复合材料模压等壳体轻量化设计方案,可以在确保电池包性能的前提下有效降低整包质量,从而提高电池包的能量密度。
Through the comparative analysis of cell base materials,various cell integration technologies,and lightweight battery housing solutions,the technical paths for battery density enhancement are elaborated.The improvement in energy density of individual battery cells heavily relies on significant breakthroughs in basic material science.In the post-lithium-ion era,cell densities are expected to reach 1200 W·h/kg,while in the short term,semi-solid battery technology with a cell density of 360 W·h/kg is anticipated to be the first to achieve mass production,enabling electric vehicles with longer driving ranges and higher energy efficiency.Another key technology is to improve cell integration efficiency.Innovative solutions such as Cell-to-Pack(CTP),Cell-to-Chassis(CTC),and Cell-to-Body(CTB)are anticipated to increase cell integration rates to 90%and space utilization to 70%,breaking traditional design limitations and significantly enhancing battery pack energy density.The lightweight design of battery housings is also essential.Lightweight housing design like aluminum alloy extruded profiles,aluminum alloy integrated die-casting,ultra-high-strength steel rolling,and carbon fiber composite materials molding can effectively reduce the overall weight of battery while ensuring performance,thus improving energy density.
作者
张成
Zhang Cheng(EDAG Engineering and Design(Shanghai)Co.,Ltd.,Shanghai 201106)
出处
《汽车文摘》
2024年第8期35-42,共8页
Automotive Digest
关键词
能量密度
电池
轻量化
纯电动汽车
电芯集成技术
Energy density
Battery
Lightweight
Battery-powered electric vehicles
Cell integrated technology