期刊文献+

基于动态受控主元分析模型的故障检测

Fault Detection Based on Dynamic Controlled Principal Component Analysis Model
下载PDF
导出
摘要 为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。 In order to improve the accuracy of fault detection,a fault detection method based on dynamic controlled principal component analysis(DCPCA)model is proposed.Firstly,DCPCA is used to extract the dynamic controlled principal component(DCPC),and the DCPC contains the autoregressive characteristics of the process and the dynamic causal relationship with the control input,which makes the DCPCA model accurate.Then,to solve the problem that traditional methods only detect the static spatial structure faults of process variables and ignore the dynamic characteristics,a comprehensive detection indicator is applied based on the DCPCA model to detect both static reconstruction errors and dynamic model errors in time,so that the detection results are more comprehensive.Finally,simulation results based on Tennessee-Eastman(TE)process verify the feasibility and effectiveness of the proposed method.
作者 陈硕 栾小丽 刘飞 CHEN Shuo;LUAN Xiaoi;LIU Fei(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《控制工程》 CSCD 北大核心 2024年第7期1280-1285,共6页 Control Engineering of China
基金 国家自然科学基金资助项目(61991402,61833007,61991400)。
关键词 动态受控主元分析 故障检测 综合指标 静态重构误差 动态模型误差 Dynamic controlled principal component analysis fault detection comprehensive indicator static reconstruction error dynamic model error
  • 相关文献

参考文献2

二级参考文献11

  • 1Jolliffe I T. Principal Component Analysis. New York, Berlin: Springer-Verlag, 1986.
  • 2Qin S J. Statistical process monitoring: Basics and beyond. Journal of Chemometrics, 2003, 17: 480-502.
  • 3Qin J. Data-driven fault detection and diagnosis for complex industrial processes. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain, 2009:1115-1125.
  • 4Venkatasubramanian V, Rengaswamy R, Kavuri S, et al. Review of process fault detection and diagnosis part Ⅲ: Quantitative model-based methods. Computers and Chemical Engineering, 2003, 27: 327-346.
  • 5Li W, Yue H, Valle-Cervantes S, et al. Recursive pca for adaptive process monitoring. Journal of Process Control, 2000, 10(5): 471-486.
  • 6Wang X, Kruger U, Irwin G W. Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research, 2005, 44: 5691-5702.
  • 7Liu X, Kruger U, Littler T, et al. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometries and Intelligent Laboratory Systems, 2009, 96: 132-143.
  • 8Jackson J E, Mudholkar G S. Control procedures for residual associated with principal component analysis. Technometrics, 1979, 21: 341-349.
  • 9Basseville M, Nikiforov I. Detection of Abrupt Changes- Theory and Application. NJ, USA: Prentice-Hall, 1993.
  • 10刘强,柴天佑,秦泗钊,赵立杰.基于数据和知识的工业过程监视及故障诊断综述[J].控制与决策,2010,25(6):801-807. 被引量:69

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部