期刊文献+

基于图像处理的铁矿浮选泡沫品位分析

Analysis of Froth Grade in Iron Ore Flotation Based on Image Processing
下载PDF
导出
摘要 浮选过程是一种复杂的物理化学过程,对于矿产资源的提取具有重要意义。然而,传统的人工观察方法主观性高、效率低,易出现浮选性能波动、资源损失等问题。使用基于图像处理的浮选过程监测可提高生产效率和自动化水平,目前国内涉及对泡沫的图像分析较少,本文旨在解决浮选泡沫的特征提取和品位分析难题,研究适应性强,计算复杂度较低,有助于提高选矿生产效率和自动化水平。 The flotation process is a complex physical and chemical process that plays an important role in the extraction of mineral resources.However,traditional manual observation methods are subjective,inefficient,and often result in fluctuations in flotation performance and loss of resources.The use of image-based flotation process monitoring can improve production efficiency and automation levels.Currently,there are few studies in China on image analysis of froth.This paper aims to solve the problem of feature extraction and grade analysis of froth in flotation,and research on adaptive,low-complexity computation methods that can help improve the efficiency and automation level of mineral processing production.
作者 侯卫钢 张晓淼 朱琳 毛瑞 赵浩博 张雪峰 HOU Weigang;ZHANG Xiaomiao;ZHU Li;MAO Rui;ZHAO Haobo;ZHANG Xuefeng(Ansteel Mining Engineering Corporation,Anshan 114014,China;Liaoning Zhongxin Automation Control Group co.,LTD,Anshan 114001,China)
出处 《矿业工程》 CAS 2024年第4期84-87,92,共5页 Mining Engineering
关键词 浮选 特征提取 机器视觉 神经网络 flotation feature extraction machine vision neural network
  • 相关文献

参考文献1

二级参考文献15

  • 1Fuerstenau D W. The froth flotation century[J]. Metallic Ore Dressing Aborad, 2001, 38(3): 2-9.
  • 2Kaartinen J, Hatonen J, Hyotyniemi H, et al. Machine-vision-based control of zinc flotation - A case study[J]. Control Engineering Practice, 2006, 14(12): 1455-1466.
  • 3Moolman D W, Aldrich C, Schmitz G P J, et al. The interrelationship between surface froth characteristics and industrial flotation performance[J]. Minerals Engineering, 1996, 9(8): 837-854.
  • 4Nunez F, Cipriano A. Visual information model based predictor for froth speed control in flotation process[J]. Minerals Engineering, 2009, 22(4): 366-371.
  • 5Santiago J G, Wereley S T, Meinhart C D, et al. A micro particle image velocimetry system[J]. Experiments in Fluids, 1998(25): 316-319.
  • 6Xu J B, Po L M, Cheung C K. Adaptive motion tracking block matching algorithms for video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9(7): 1025- 1029.
  • 7Wang H S, Mersereau R M. Fast algorithms for the estimation of motion vectors[J]. IEEE Transactions on Image Processing, 1999, 8(3): 435-438.
  • 8Kelly D J, Azeloglu E U, Kochupura P V, et al. Accuracy and reproducibility of a subpixel extended phase correlation method to determine micron level displacements in the heart[J]. Medical Engineering & Physics, 2007, 29(1): 154-162.
  • 9Gleason S S, Hunt M A, Jatko W B. Subpixel measurement of image features based on paraboloid surface fit[C]//Proceedings of SPIE: Machine Vision Systems Integration in Industry: vo1.1386. Bellingham, WA, USA: SPIE, 1990: 135-144.
  • 10Reddy B S, Chatterji B N. An FbT-based technique for translation, rotation, and scale-invariant image registration[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1266-1271.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部