期刊文献+

锂离子电池硬炭负极的储锂机理及储锂性能优化进展

Progress in Lithium Storage Mechanism and Optimizing Lithium Storage Performance of Hard Carbon Anodes for Lithium-ion Batteries
下载PDF
导出
摘要 硬炭负极因其高比容量、高倍率快充和不析锂无膨胀等特性而具有良好的研究价值和应用前景,其对锂离子电池(LIBs)的性能起到关键作用。近年来,众多学者对硬炭负极展开了大量研究,尤其是硬炭的储锂机理和储锂性能的优化策略。本文首先概述了硬炭的形成过程和储锂机理,为设计高性能硬炭负极提供理论基础和科学依据;其次分别基于生物质和聚合物两类前驱体,综述了硬炭负极在制备工艺、结构调控、形貌设计和杂原子掺杂等改性策略上的最新进展,并提出共轭微孔聚合物硬炭有望作为未来硬炭储锂性能优化的方向之一;最后探讨了硬炭作为LIBs负极面临的挑战和未来的研究方向。 The hard carbon anode has significant research value and promising application prospects due to its excellent specific capacity,high-rate fast charging capability,absence of lithium branches crystal,and lack of volume expansion behavior.It plays a crucial role in the electrochemical performance of lithium-ion batteries(LIBs).In recent years,numerous scholars have conducted extensive research on hard carbon anodes,particularly focusing on the lithium storage mechanism and the optimizing strategies of lithium storage performance.This article provides an overview of the formation process and lithium storage mechanism of hard carbon.It offers a theoretical foundation and scientific basis for designing high-performance hard carbon anodes.This paper subsequently summarizes the latest advancements in preparation techniques,structural regulation,morphology design,and heteroatom doping for modifying hard carbon anodes.These advancements are based on two categories of precursors:biomass and polymers.Furthermore,conjugated microporous polymers hard carbon is proposed as a future direction for optimizing lithium storage performance.Finally,the challenges and future research directions for hard carbon as anodes are discussed.
作者 舒琦琪 连斐 梁陈利 张庆堂 SHU Qiqi;LIAN Fei;LIANG Chenli;ZHANG Qingtang(School of Petrochemical Technology,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《材料导报》 EI CAS CSCD 北大核心 2024年第13期1-10,共10页 Materials Reports
基金 国家自然科学基金(21968016,21466020)。
关键词 锂离子电池 硬炭 负极 储锂机理 性能优化 lithium-ion batteries hard carbon anode lithium storage mechanism performance optimization
  • 相关文献

参考文献3

二级参考文献15

  • 1[1]W.H. Meiklejohn and C.P. Bean, Phys. Rev. B 102 (1956) 1423.
  • 2[2]K. Nishioka, C.H .Hou, H. Fujiwara and R.D. Metzger, J. Appl. Phys. 80 (1996) 4528.
  • 3[3]Z.H. Qian, J.M. Sicertsen and J.H. Judy, J. Appl. Phys. 83 (1996) 6825.
  • 4[4]G.H. Yu. C.L. Chai, F.W. Zhu and W.Y. Lai, Appl. Phys. Lett. 78 (2001) 1706.
  • 5[5]H. Fujiwara. K. Nishioka. C. Hou, M.R. Parker, S. Gangopadhyay and R. Metzger, J..Appl. Phys. 79(1996) 6286.
  • 6[6]D.H. Han, J.G. Zhu and J.H. Judy. J. Appl. Phys. 81 (1997) 4996.
  • 7[7]N.J. Gokemeijer, T. Ambrose, C.L. Chien, N. Wang and K.K. Fung. J. Appl. Phys. 81 (1997) 4999.
  • 8徐叔军,梁丽芸,李步怡,罗亚莉,刘承美,谭必恩.有机微孔聚合物研究进展[J].化学进展,2011,23(10):2085-2094. 被引量:17
  • 9马昀,周妍,杜文琦,缪智辉,祁争健.基于共轭聚合物的核酸生物传感器的应用[J].化学进展,2015,27(12):1799-1807. 被引量:3
  • 10贺倩,张崇,李晓,王雪,牟攀,蒋加兴.芘基共轭微孔聚合物用于锂离子电池电极材料性能研究[J].化学学报,2018,76(3):202-208. 被引量:13

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部