期刊文献+

基于显著性检测的坯布疵点图像自适应分割方法

Adaptive segmentation method of grey fabric defect image based on saliency detection
原文传递
导出
摘要 针对坯布图像疵点相对占比小、易湮没在面料背景中,且疵点形状不规则、边缘难以有效分割的问题,提出了一种基于显著性检测的坯布疵点图像自适应分割方法.该方法采用视觉显著性方法分析疵点在坯布图像上的光强分布、形状及颜色差异特性,设计多视觉显著性特征函数,对显著性区域进行超像素标注;提出计算自适应分割阈值的方法提取疵点边界细节,对坯布图像上的疵点区域进行分割定位,实现疵点的精确检测.结果表明:该方法能够获得内部均匀致密且边界清晰明确的疵点图像区域,6类疵点的整体检测精度达到98.26%,提高了坯布疵点图像分割效果. To address the issue of small defects blending into the fabric background due to the irregular shapes and the difficulty of effective edge segmentation,an adaptive segmentation method of grey fabric defect image was proposed based on saliency detection.This approach utilized visual saliency techniques to analyze light intensity distribution,shape and color difference characteristics of defects on grey fabric images,and a multi-visual saliency feature function was designed to label salient areas in super-pixels.Then,a method of calculating the adaptive segmentation threshold was proposed to extract the defect boundary details,and thereby segmenting and localizing defect regions on grey fabric images were carried on.Finally,the accurate detection of defects was realized.Experimental results show that the proposed approach can obtain uniform and dense defect areas with clear boundaries,and the overall detection accuracy of 6 types of defects reaches 98.26%,which can effectively improve the results of grey fabric defect image segmentation.
作者 朱子洵 张洁 汪俊亮 ZHU Zixun;ZHANG Jie;WANG Junliang(School of Mechanical Engineering,Donghua University,Shanghai 201600,China;Institute of Artificial Intelligence,Donghua University,Shanghai 201600,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期39-47,共9页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(52375485) 中央高校基本科研业务费专项资金资助项目(2232024G-14) 上海市自然科学基金资助项目(22ZR1403000)。
关键词 坯布疵点检测 视觉显著性 特征提取 图像分割 自适应阈值 grey fabric defects detection visual saliency feature extraction image segmentation adaptive threshold
  • 相关文献

参考文献7

二级参考文献80

  • 1夏冬升,汪军.基于小波变换和图像分割的织物等级自动评定[J].东华大学学报(自然科学版),2007,33(2):221-226. 被引量:4
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3Siew L H, Hodgson R M, Wood E J. Texture measures for carpet wear assessment[J]. IEEE Trans on PAMI, 1988, 10(1): 92-105.
  • 4Cohen F, Fan Z, Attalis S. Automated inspection of textile fabrics using textural models[J]. IEEE Transactions on PAMI, 1991, 13(11): 803-808.
  • 5Kumar A, Pang G. Defect detection in textured materials using gabor filters[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 425-440
  • 6Chetverikov D, Hanbury A. Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002, 35: 203-218.
  • 7Loupias E, Sebe N, Bres S, Jolion J M. Wavelet-based salient points for image retrieval. In: Proceedings of the 2000 IEEEInternational Conference on hnage Processing. Vancouver, British Columbia, Canada: IEEE, 2000, 2:518-521.
  • 8Jian M W, Dong J Y, Ma J. Image retrieval using wavelet- based salient regions. The Imaging Science Journal, 2011, 59(4): 219-2:31.
  • 9Guo C L, Zhang L M. A novel nmlti-resolution spatiotem- poral saliency detection model and its applications in image and video compression. IEEE Transactions on Image Pro- cessing, 2010, 19(1): 185-198.
  • 10Kim W, Kim C. A novel image importance model for content-aware image resizing. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brus- sels, Belguim: IEEE, 2011. 2469-2472.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部