期刊文献+

基于无人机影像的鼠害地秃斑识别算法筛选

Screening of identification algorithm for rodent-induced bare patches based on the drone imagery
原文传递
导出
摘要 鼠害型秃斑是反映草地鼠害的重要表征。利用无人机遥感技术识别高原鼠兔危害型秃斑对于评价其危害情况具有重要意义。本研究基于无人机可见光影像,使用最小距离(MinD)、最大似然(ML)、支持向量机(SVM)、马氏距离(MD)和神经网络(NN)5种监督分类算法对高原鼠兔危害地特征进行分类识别,并采用混淆矩阵对5种分类方法精度进行评价。结果表明:相较于其他3种方法,NN和SVM对高原鼠兔危害地特征进行识别分类的效果更好。其中,NN对草地与秃斑2种目标地物的制图精度分别为98.1%和98.5%,用户精度分别为98.8%和97.7%,模型总体精度为98.3%,Kappa系数为0.97,像元错分、漏分现象较低。经实践验证,NN表现出较好的稳定性。综上,神经网络方法是高寒草甸鼠害型秃斑识别的优选方法。 Rodent-infested bald spots are crucial indicators of rodent infestation in grasslands.Leveraging Unmanned Aerial Vehicle(UAV)remote sensing technology for discerning detrimental bald spots among plateau pikas has significant implications for assessing associated ecological hazards.Based on UAV-visible light imagery,we classified and recognized the characteristics of plateau pika habitats with five supervised classification algorithms,i.e.,minimum distance classification(MinD),maximum likelihood classification(ML),support vector machine classification(SVM),Mahalanobis distance classification(MD),and neural network classification(NN).The accuracy of the five methods was evaluated using a confusion matrix.Results showed that NN and SVM exhibited superior performance than other methods in identifying and classifying features indicative of plateau pika habitats.The mapping accuracy of NN for grassland and bald spots was 98.1% and 98.5%,respectively,with corresponding user accuracy was 98.8% and 97.7%.The overall model accuracy was 98.3%,with a Kappa coefficient of 0.97,reflecting minimal misclassification and omission errors.Through practical verification,NN exhibited good stability.In conclusion,the neural network method was suitable for identifying rodent-damaged bald spots within alpine meadows.
作者 蔡斌 董瑞 花蕊 刘济泽 王磊 郝媛媛 杨思维 花立民 CAI Bin;DONG Rui;HUA Rui;LIU Jize;WANG Lei;HAO Yuanyuan;YANG Siwei;HUA Limin(College of Pratacultural Science,Gansu Agricultural Universit/Key Laboratory of Grassland Ecosystems of the Ministry of Education/Engineering and Technology Research Center for Alpine Rodent Pest Control,National Forestry and Grassland Administration,Lanzhou 730070,China;Sichuan Academy of Grassland Science/Qinghai-Tibet Plateau Alpine Grassland Ecology Restoration Engineering Technology Research Center/Seda Grassland Ecology Sichuan Field Scientific Observation and Research Station,Chengdu 611730,China;Grassland Research Institute,Chinese Academy of Agricultural Sciences,Hohhot 010010,China)
出处 《应用生态学报》 CAS CSCD 北大核心 2024年第7期1951-1958,共8页 Chinese Journal of Applied Ecology
基金 高校科研创新平台重大培育项目(2024CXPT-07) 四川省自然科学基金面上项目(2023NSFSC0207) 甘肃省教育厅产业支撑计划项目(2021CYZC-05)资助。
关键词 高寒草甸 鼠害地 无人机 监督分类 神经网络 alpine meadow rodent-infested land unmanned aerial vehicle supervised classification neural network
  • 相关文献

参考文献28

二级参考文献489

共引文献456

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部