摘要
相比同源影像,光学影像和合成孔径雷达SAR(Synthetic Aperture Radar)影像变化检测具有充分利用不同类型数据之间的互补信息、发挥其各自优势的优点,已成为遥感领域的研究热点,在应急灾害监测等方面具有广阔的应用前景。然而,光学影像和SAR影像的成像特征差异导致无法直接对比双时相影像提取变化信息,现有光学影像和SAR影像变化检测方法对特征空间统一的精度与效率不高。对此,本文认为光学影像和SAR影像间的差异主要由成像特征差异导致,因此可以通过特征空间变换,将影像映射到同一特征空间进行比较。由此提出了一种新的对称网络结构,通过基于相似性度量的网络初始化及优化,将光学影像和SAR影像映射到近似的特征空间中进行比较并提取变化信息。首先度量对称网络提取的多组特征之间的相似性,利用相似性最大特征组对应的网络权重实现网络初始化,引导光学影像和SAR影像特征映射。然后通过相似性优化学习将光学影像和SAR影像映射到同一特征空间进行直接对比,并对多时相特征变化向量进行聚类分析以区分变化类型。本文利用3组光学影像和SAR影像数据集(Google Earth影像、Landsat 8影像和哨兵1号影像)的实验结果表明:相对于现有方法,本文方法的卡帕系数KC(Kappa Coefficient)至少提高了4.02%,且运行时间至少降低了30.79%,有效提高了光学影像和SAR影像变化检测的精度与效率。
Compared with homogeneous image change detection(homo-CD),Change Detection(CD)of optical images and SAR images offers the advantage of utilizing complementary information from different types of data.This advantage has made it a research hotspot in the field of remote sensing image processing and holds promise for emergency disaster monitoring.However,the differences in imaging mechanisms between optical and SAR images prevent direct comparison of bitemporal images for CD.Existing methods for optical image and SAR image CD still face certain challenges.Methods aiming to unify the feature space of optical and SAR images often suffer from issues,such as low mapping precision and efficiency.In this study,we propose a Symmetric Change Detection Network(SCDN)that addresses the difference in imaging features between optical and SAR images by mapping them to a common feature space for comparison.The SCDN is initialized and optimized using similarity measurement,and it subsequently maps the optical and SAR images to a similar feature space for change information extraction.The proposed method consists of several steps.First,the similarity between multiple sets of features generated by the symmetrical network is measured,and the weights corresponding to the most similar features are used to initialize the network.This initialization guides the network to map optical and SAR image features.Subsequently,the SCDN maps the optical images and SAR images into the same feature space using similarity optimal learning,enabling direct comparison.Finally,change types are determined by clustering the multitemporal change vectors.To validate the proposed method,we conduct experiments using three sets of images,namely,Google Earth,Landsat-8,and Sentinel-1 images.Comparative analysis with five state-of-the-art methods reveals that the proposed method achieves an increase of at least 4.02%in the kappa coefficient while reducing the running time by at least 30.79%.In this study,we introduce SCDN,a CD method for optical and SAR images.Experimental results demonstrate its effectiveness in achieving relatively high precision and efficiency compared with existing methods.
作者
汤玉奇
林泽锋
韩特
杨欣
邹滨
冯徽徽
TANG Yuqi;LIN Zefeng;HAN Te;YANG Xin;ZOU Bin;FENG Huihui(Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,Changsha 410083,China;School of Geosciences and Info-physics,Central South University,Changsha 410083,China)
出处
《遥感学报》
EI
CSCD
北大核心
2024年第6期1560-1575,共16页
NATIONAL REMOTE SENSING BULLETIN
基金
国家自然科学基金(编号:41971313)。
关键词
遥感
光学影像
SAR影像
变化检测
对称网络
特征提取
空间映射
相似性度量
变化类型
remote sensing
optical image
SAR image
change detection
symmetric network
feature extraction
spatial mapping
similarity measure
change type